Classification of adaptor proteins using recurrent neural networks and PSSM profiles

Author:

Khanh Le Nguyen Quoc,Nguyen Quang H.,Chen Xuan,Rahardja Susanto,Nguyen Binh P.

Abstract

Abstract Background Adaptor proteins are carrier proteins that play a crucial role in signal transduction. They commonly consist of several modular domains, each having its own binding activity and operating by forming complexes with other intracellular-signaling molecules. Many studies determined that the adaptor proteins had been implicated in a variety of human diseases. Therefore, creating a precise model to predict the function of adaptor proteins is one of the vital tasks in bioinformatics and computational biology. Few computational biology studies have been conducted to predict the protein functions, and in most of those studies, position specific scoring matrix (PSSM) profiles had been used as the features to be fed into the neural networks. However, the neural networks could not reach the optimal result because the sequential information in PSSMs has been lost. This study proposes an innovative approach by incorporating recurrent neural networks (RNNs) and PSSM profiles to resolve this problem. Results Compared to other state-of-the-art methods which had been applied successfully in other problems, our method achieves enhancement in all of the common measurement metrics. The area under the receiver operating characteristic curve (AUC) metric in prediction of adaptor proteins in the cross-validation and independent datasets are 0.893 and 0.853, respectively. Conclusions This study opens a research path that can promote the use of RNNs and PSSM profiles in bioinformatics and computational biology. Our approach is reproducible by scientists that aim to improve the performance results of different protein function prediction problems. Our source code and datasets are available at https://github.com/ngphubinh/adaptors.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3