Author:
Wang Wei,Wang Lei,Wang Ling,Tan Meilian,Ogutu Collins O.,Yin Ziyan,Zhou Jian,Wang Jiaomei,Wang Lijun,Yan Xingchu
Abstract
Abstract
Background
Oil flax (linseed, Linum usitatissimum L.) is one of the most important oil crops., However, the increases in drought resulting from climate change have dramatically reduces linseed yield and quality, but very little is known about how linseed coordinates the expression of drought resistance gene in response to different level of drought stress (DS) on the genome-wide level.
Results
To explore the linseed transcriptional response of DS and repeated drought (RD) stress, we determined the drought tolerance of different linseed varieties. Then we performed full-length transcriptome sequencing of drought-resistant variety (Z141) and drought-sensitive variety (NY-17) under DS and RD stress at the seedling stage using single-molecule real-time sequencing and RNA-sequencing. Gene Ontology (GO) and reduce and visualize GO (REVIGO) enrichment analysis showed that upregulated genes of Z141 were enriched in more functional pathways related to plant drought tolerance than those of NY-17 were under DS. In addition, 4436 linseed transcription factors were identified, and 1190 were responsive to stress treatments. Moreover, protein-protein interaction (PPI) network analysis showed that the proline biosynthesis pathway interacts with stress response genes through RAD50 (DNA repair protein 50) interacting protein 1 (RIN-1). Finally, proline biosynthesis and DNA repair structural gene expression patterns were verified by RT- PCR.
Conclusions
The drought tolerance of Z141 may be related to its upregulation of drought tolerance genes under DS. Proline may play an important role in linseed drought tolerance by maintaining cell osmotic and protecting DNA from ROS damage. In summary, this study provides a new perspective to understand the drought adaptability of linseed.
Funder
China Agriculture Research System
National Infrastructure for Crop Germplasm Resources
National Program for Crop Germplasm Protection of China
the Fundamental Research Funds for Central Non‐profit Scientific Institution
Publisher
Springer Science and Business Media LLC
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献