Gene expression within the periaqueductal gray is linked to vocal behavior and early-onset parkinsonism in Pink1 knockout rats

Author:

Kelm-Nelson Cynthia A.ORCID,Gammie Stephen

Abstract

Abstract Background Parkinson’s disease (PD) is a degenerative disease with early-stage pathology hypothesized to manifest in brainstem regions. Vocal deficits, including soft, monotone speech, result in significant clinical and quality of life issues and are present in 90% of PD patients; yet the underlying pathology mediating these significant voice deficits is unknown. The Pink1−/− rat is a valid model of early-onset PD that presents with analogous vocal communication deficits. Previous work shows abnormal α-synuclein protein aggregation in the periaqueductal gray (PAG), a brain region critical and necessary to the modulation of mammalian vocal behavior. In this study, we used high-throughput RNA sequencing to examine gene expression within the PAG of both male and female Pink1−/− rats as compared to age-matched wildtype controls. We used a bioinformatic approach to (1) test the hypothesis that loss of Pink1 in the PAG will influence the differential expression of genes that interact with Pink1, (2) highlight other key genes that relate to this type of Mendelian PD, and (3) catalog molecular targets that may be important for the production of rat vocalizations. Results Knockout of the Pink1 gene resulted in differentially expressed genes for both male and female rats that also mapped to human PD datasets. Pathway analysis highlighted several significant metabolic pathways. Weighted gene co-expression network analysis (WGCNA) was used to identify gene nodes and their interactions in (A) males, (B) females, and (C) combined-sexes datasets. For each analysis, within the module containing the Pink1 gene, Pink1 itself was the central node with the highest number of interactions with other genes including solute carriers, glutamate metabotropic receptors, and genes associated with protein localization. Strong connections between Pink1 and Krt2 and Hfe were found in both males and female datasets. In females a number of modules were significantly correlated with vocalization traits. Conclusions Overall, this work supports the premise that gene expression changes in the PAG may contribute to the vocal deficits observed in this PD rat model. Additionally, this dataset identifies genes that represent new therapeutic targets for PD voice disorders.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3