Impacts of longitudinal water curtain cooling system on transcriptome-related immunity in ducks

Author:

Hu Qian,Zhang Tao,He Hua,Pu Fajun,Zhang Rongping,Li Liang,Hu Jiwei,Bai Lili,Han Chunchun,Wang Jiwen,Liu Hehe

Abstract

Abstract Background The closed poultry houses integrated with a longitudinal water curtain cooling system (LWCCS) are widely used in modern poultry production. This study showed the variations in environmental conditions in closed houses integrated with a longitudinal water curtain cooling system. We evaluated the influence of different environmental conditions on duck growth performance and the transcriptome changes of immune organs, including the bursa of Fabricius and the spleen. Result This study investigated the slaughter indicators and immune organ transcriptomes of 52-day-old Cherry Valley ducks by analyzing the LWCC at different locations (water curtain end, middle position, and fan cooling end). The results showed that the cooling effect of the LWCCS was more evident from 10:00 a.m. -14:00. And from the water curtain end to the fan cooling end, the hourly average temperature differently decreased by 0.310℃, 0.450℃, 0.480℃, 0.520℃, and 0.410℃, respectively (P < 0.05). The daily and hourly average relative humidity decreased from the water curtain end to the fan cooling end, dropping by 7.500% and 8.200%, respectively (P < 0.01). We also observed differences in production performance, such as dressing weight, half-eviscerated weight, skin fat rate, and percentage of abdominal fat (P < 0.01), which may have been caused by environmental conditions. RNA-sequencing (RNA-seq) revealed 211 and 279 differentially expressed genes (DEGs) in the ducks’ bursa of Fabricius and spleen compared between the water curtain end and fan cooling end, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the two organs showed the DEGs were mainly enriched in cytokine-cytokine receptor interaction, integral component of membrane, Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway, etc. Our results implied that full-closed poultry houses integrated with LWCCS could potentially alter micro-environments (water curtain vs. fan cooling), resulting in ducks experiencing various stressful situations that eventually affect their immunity and production performance. Conclusion In this study, our results indicated that uneven distributions of longitudinal environmental factors caused by LWCCS would affect the dressed weight, breast muscle weight, skin fat rate, and other product performance. Moreover, the expression of immune-related genes in the spleen and bursa of ducks could be affected by the LWCCS. This provides a new reference to optimize the use of LWCCS in conjunction with close duck houses in practical production.

Funder

China Agricultural Research System of MOF and M RA

Grants from the National Key R&D Program of China

Key Technology Support Program of Sichuan Province

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. Wei F, Hu X, Xu B, Zhang M, Li S, Sun Q, Lin P. Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers. Genet Mol Res. 2015;14(2):3160–9.

2. Selvam R, Suresh S, Saravanakumar M, Chandrasekaran C. Alleviation of heat stress by a polyherbal formulation, Phytocee™: impact on zootechnical parameters, cloacal temperature, and stress markers. Pharmacognosy Res. 2018;10(1):1.

3. Zhu C, Xu W, Tao Z, Song W, Liu H, Zhang S, Li H. Effects of atmospheric ammonia on the production performance, serum biochemical indices, and liver RNA-seq data of laying ducks. Br Poult Sci. 2020;61(4):337–43.

4. Miles D, Branton S, Lott B. Atmospheric ammonia is detrimental to the performance of modern commercial broilers. Poult Sci. 2004;83(10):1650–4.

5. Yang X, Liu S, Zhan K, Li J, Liu W, Li M, Li H, Wang S. Measurement of environmental quality parameters and its correlation analysis of layer house with eight overlap tiers cages in summer. China Poult. 2015;37(10):26–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3