Genome analyses of four Wolbachia strains and associated mitochondria of Rhagoletis cerasi expose cumulative modularity of cytoplasmic incompatibility factors and cytoplasmic hitchhiking across host populations

Author:

Morrow Jennifer L.,Riegler Markus

Abstract

Abstract Background The endosymbiont Wolbachia can manipulate arthropod reproduction and invade host populations by inducing cytoplasmic incompatibility (CI). Some host species are coinfected with multiple Wolbachia strains which may have sequentially invaded host populations by expressing different types of modular CI factor (cif) genes. The tephritid fruit fly Rhagoletis cerasi is a model for CI and Wolbachia population dynamics. It is associated with at least four Wolbachia strains in various combinations, with demonstrated (wCer2, wCer4), predicted (wCer1) or unknown (wCer5) CI phenotypes. Results We sequenced and assembled the draft genomes of the Wolbachia strains wCer1, wCer4 and wCer5, and compared these with the previously sequenced genome of wCer2 which currently invades R. cerasi populations. We found complete cif gene pairs in all strains: four pairs in wCer2 (three Type I; one Type V), two pairs in wCer1 (both Type I) and wCer4 (one Type I; one Type V), and one pair in wCer5 (Type IV). Wolbachia genome variant analyses across geographically and genetically distant host populations revealed the largest diversity of single nucleotide polymorphisms (SNPs) in wCer5, followed by wCer1 and then wCer2, indicative of their different lengths of host associations. Furthermore, mitogenome analyses of the Wolbachia genome-sequenced individuals in combination with SNP data from six European countries revealed polymorphic mitogenome sites that displayed reduced diversity in individuals infected with wCer2 compared to those without. Conclusions Coinfections with Wolbachia are common in arthropods and affect options for Wolbachia-based management strategies of pest and vector species already infected by Wolbachia. Our analyses of Wolbachia genomes of a host naturally coinfected by several strains unravelled signatures of the evolutionary dynamics in both Wolbachia and host mitochondrial genomes as a consequence of repeated invasions. Invasion of already infected populations by new Wolbachia strains requires new sets of functionally different cif genes and thereby may select for a cumulative modularity of cif gene diversity in invading strains. Furthermore, we demonstrated at the mitogenomic scale that repeated CI-driven Wolbachia invasions of hosts result in reduced mitochondrial diversity and hitchhiking effects. Already resident Wolbachia strains may experience similar cytoplasmic hitchhiking effects caused by the invading Wolbachia strain.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3