Author:
Liu Ningyawen,Zhang Lu,Zhou Yanli,Tu Mengling,Wu Zhenzhen,Gui Daping,Ma Yongpeng,Wang Jihua,Zhang Chengjun
Abstract
Abstract
Background
The genus Rhododendron L. has been widely cultivated for hundreds of years around the world. Members of this genus are known for great ornamental and medicinal value. Owing to advances in sequencing technology, genomes and transcriptomes of members of the Rhododendron genus have been sequenced and published by various laboratories. With increasing amounts of omics data available, a centralized platform is necessary for effective storage, analysis, and integration of these large-scale datasets to ensure consistency, independence, and maintainability.
Results
Here, we report our development of the Rhododendron Plant Genome Database (RPGD; http://bioinfor.kib.ac.cn/RPGD/), which represents the first comprehensive database of Rhododendron genomics information. It includes large amounts of omics data, including genome sequence assemblies for R. delavayi, R. williamsianum, and R. simsii, gene expression profiles derived from public RNA-Seq data, functional annotations, gene families, transcription factor identification, gene homology, simple sequence repeats, and chloroplast genome. Additionally, many useful tools, including BLAST, JBrowse, Orthologous Groups, Genome Synteny Browser, Flanking Sequence Finder, Expression Heatmap, and Batch Download were integrated into the platform.
Conclusions
RPGD is designed to be a comprehensive and helpful platform for all Rhododendron researchers. Believe that RPGD will be an indispensable hub for Rhododendron studies.
Funder
National Natural Science Foundation of China
Construction of International Flower Technology Innovation Center and Industrialization of achievements
Program of Science and Technology Talents Training in Yunnan province
Youth Program of National Natural Science Foundation of China
Ten Thousand Young Talents Plan of Yunnan
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Yan LJ, Liu J, Möller M, Zhang L, Zhang XM, Li DZ, et al. DNA barcoding of Rhododendron (Ericaceae), the largest Chinese plant genus in biodiversity hotspots of the Himalaya-Hengduan Mountains. Mol Ecol Resour. 2015;15(4):932–44. https://doi.org/10.1111/1755-0998.12353.
2. Chamberlain D, Hyam R, Argent G, Fairweather G, Walter KS. The genus Rhododendron: its classification and synonymy. Edinburgh: Royal Botanic Garden Edinburgh; 1996.
3. Tian XL, Chang YH, Neilsen J, Wang SH, Ma YP. A new species of Rhododendron (Ericaceae) from northeastern Yunnan. China Phytotaxa. 2019;395(2):66–70. https://doi.org/10.11646/phytotaxa.395.2.2.
4. Fang MY, Fang RZ, He MY, Hu LZ, Yang HB, Qin HN, et al. Flora of China. Volume 14: Apiaceae through Ericaceae. Beijing: Science Press; 2005.
5. Ma YP, Wu ZK, Xue RJ, Tian XL, Gao LM, Sun WB. A new species of Rhododendron (Ericaceae) from the Gaoligong Mountains, Yunnan, China, supported by morphological and DNA barcoding data. Phytotaxa. 2013;114(1):42–50. https://doi.org/10.11646/phytotaxa.114.1.4.