Author:
Yao Zhihao,Zhang Jing,Zou Xiufen
Abstract
Abstract
Background
With the advance of high throughput sequencing, high-dimensional data are generated. Detecting dependence/correlation between these datasets is becoming one of most important issues in multi-dimensional data integration and co-expression network construction. RNA-sequencing data is widely used to construct gene regulatory networks. Such networks could be more accurate when methylation data, copy number aberration data and other types of data are introduced. Consequently, a general index for detecting relationships between high-dimensional data is indispensable.
Results
We proposed a Kernel-Based RV-coefficient, named KBRV, for testing both linear and nonlinear correlation between two matrices by introducing kernel functions into RV2 (the modified RV-coefficient). Permutation test and other validation methods were used on simulated data to test the significance and rationality of KBRV. In order to demonstrate the advantages of KBRV in constructing gene regulatory networks, we applied this index on real datasets (ovarian cancer datasets and exon-level RNA-Seq data in human myeloid differentiation) to illustrate its superiority over vector correlation.
Conclusions
We concluded that KBRV is an efficient index for detecting both linear and nonlinear relationships in high dimensional data. The correlation method for high dimensional data has possible applications in the construction of gene regulatory network.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Natural Science Foundation of Hubei Province
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016; 17(6):333.
2. van Dam S, Vosa U, van der Graaf A, Franke L, de Magalhaes JP. Gene co-expression analysis for functional classification and gene–disease predictions. Brief Bioinform. 2018; 19(4):575–92.
3. Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet. 2013; 14(9):618–30.
4. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011; 472(7341):90.
5. Fischer DS, Fiedler AK, Kernfeld EM, Genga RM, Bastidas-Ponce A, Bakhti M, Lickert H, Hasenauer J, Maehr R, Theis FJ. Inferring population dynamics from single-cell rna-sequencing time series data. Nat Biotechnol. 2019; 37(4):461–8.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献