A pipeline for sample tagging of whole genome bisulfite sequencing data using genotypes of whole genome sequencing

Author:

Xu Zhe,Cheng Si,Qiu Xin,Wang Xiaoqi,Hu Qiuwen,Shi Yanfeng,Liu Yang,Lin Jinxi,Tian Jichao,Peng Yongfei,Jiang Yong,Yang Yadong,Ye Jianwei,Wang Yilong,Meng Xia,Li Zixiao,Li Hao,Wang Yongjun

Abstract

Abstract Background In large-scale high-throughput sequencing projects and biobank construction, sample tagging is essential to prevent sample mix-ups. Despite the availability of fingerprint panels for DNA data, little research has been conducted on sample tagging of whole genome bisulfite sequencing (WGBS) data. This study aims to construct a pipeline and identify applicable fingerprint panels to address this problem. Results Using autosome-wide A/T polymorphic single nucleotide variants (SNVs) obtained from whole genome sequencing (WGS) and WGBS of individuals from the Third China National Stroke Registry, we designed a fingerprint panel and constructed an optimized pipeline for tagging WGBS data. This pipeline used Bis-SNP to call genotypes from the WGBS data, and optimized genotype comparison by eliminating wildtype homozygous and missing genotypes, and retaining variants with identical genomic coordinates and reference/alternative alleles. WGS-based and WGBS-based genotypes called from identical or different samples were extensively compared using hap.py. In the first batch of 94 samples, the genotype consistency rates were between 71.01%-84.23% and 51.43%-60.50% for the matched and mismatched WGS and WGBS data using the autosome-wide A/T polymorphic SNV panel. This capability to tag WGBS data was validated among the second batch of 240 samples, with genotype consistency rates ranging from 70.61%-84.65% to 49.58%-61.42% for the matched and mismatched data, respectively. We also determined that the number of genetic variants required to correctly tag WGBS data was on the order of thousands through testing six fingerprint panels with different orders for the number of variants. Additionally, we affirmed this result with two self-designed panels of 1351 and 1278 SNVs, respectively. Furthermore, this study confirmed that using the number of genetic variants with identical coordinates and ref/alt alleles, or identical genotypes could not correctly tag WGBS data. Conclusion This study proposed an optimized pipeline, applicable fingerprint panels, and a lower boundary for the number of fingerprint genetic variants needed for correct sample tagging of WGBS data, which are valuable for tagging WGBS data and integrating multi-omics data for biobanks.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3