Multiple omics analysis reveals that high fiber diets promote gluconeogenesis and inhibit glycolysis in muscle

Author:

Wu JianghongORCID,Yang Ding,Gong Husile,Qi Yunxia,Sun Hailian,Liu Yongbin,Liu Yahong,Qiu Xiao

Abstract

Abstract Background Meat quality is a complex trait affected by genotypic and environmental factors. In a previous study, it was found that feedstuffs have various effects on the growth rate and meat quality of lambs. However, the underlying mechanisms are still not entirely clear. Results In this study, to investigate the mechanisms that impact meat quality in twin sheep fed either with high fiber low protein (HFLP) forage (Ceratoides) or low fiber high protein (LFHP) forage (alfalfa) diets, multi omics techniques were utilized for integration analysis based on the feed nutritional value and the sheep microbiome, transcriptome, metabolome, and fatty acid profile. Results showed that the production performance and the muscle components of lambs were significantly affected by feeds. The essential fatty acid (linoleic acid and arachidonic acid) content of the muscle, based on gas chromatography-mass spectrometry analysis, was increased when lambs were fed with HFLP. The microbes in the lambs’ rumen fed a HFLP diet were more diverse than those of the LFHP fed group. Besides, the ratio of Bacteroidetes and Firmicutes in the rumen of the sheep fed a LFHP diet was 2.6 times higher than that of the HFLP fed group. Transcriptome analysis of the muscle revealed that the genes related to glucose metabolic processes and fatty acid biosynthesis were significantly differentially expressed between the two groups. Potential cross talk was found between the sfour omics data layers, which helps to understand the mechanism by which feedstuffs affect meat quality of lambs. Conclusion Feed systems may affect the epigenetic regulation of genes involved in the glucose metabolic pathway. HFLP feeds could induce gluconeogenesis to maintain glucose levels in blood, resulting in decreased fat content in muscle. The multiple omics analysis showed that the microbiota structure is significantly correlated with the metabolome and gene expression in muscle. This study laid a theoretical foundation for controlling the nutrient intake of sheep; it suggested that its fatty acid spectrum modifications and the removal of meat quality detrimental material could guide sheep feeding for functional mutton.

Funder

National Natural Science Foundation of China

Innovation Foundation of Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences

the Doctoral Scientific Research Foundation of Inner Mongolia University for Nationalities

Natural Science Foundation of Inner Mongolia

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3