Author:
Xue Yingying,Sun Jing,Lu Fengxia,Bie Xiaomei,Li Yuanhong,Lu Yingjian,Lu Zhaoxin,Lin Fuxing
Abstract
Abstract
Background
Bacillomycin D-C16 can induce resistance in cherry tomato against pathogens; however, the underlying molecular mechanism is poorly understood. Here, the effect of Bacillomycin D-C16 on induction of disease resistance in cherry tomato was investigated using a transcriptomic analysis.
Results
Transcriptomic analysis revealed a series of obvious enrichment pathways. Bacillomycin D-C16 induced phenylpropanoid biosynthesis pathways and activated the synthesis of defense-related metabolites including phenolic acids and lignin. Moreover, Bacillomycin D-C16 triggered a defense response through both hormone signal transduction and plant-pathogen interactions pathways, and increased the transcription of several transcription factors (e.g., AP2/ERF, WRKY and MYB). These transcription factors might contribute to the further activated the expression of defense-related genes (PR1, PR10 and CHI) and stimulated the accumulation of H2O2.
Conclusion
Bacillomycin D-C16 can induce resistance in cherry tomato by activating the phenylpropanoid biosynthesis pathway, hormone signal transduction pathway and plant-pathogen interactions pathway, thus activating comprehensive defense reaction against pathogen invasion. These results provided a new insight into the bio-preservation of cherry tomato by the Bacillomycin D-C16.
Funder
National Natural Science Foundation of China
Scientific Research Foundation for Excellent Talents of Xuzhou Medical University
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献