Transcriptomic and proteomic analyses of a new cytoplasmic male sterile line with a wild Gossypium bickii genetic background

Author:

Zhao Haiyan,Wang Jianshe,Qu Yunfang,Peng Renhai,Magwanga Richard Odongo,Liu Fang,Huang Jinling

Abstract

Abstract Background Cotton is an important fiber crop but has serious heterosis effects, and cytoplasmic male sterility (CMS) is the major cause of heterosis in plants. However, to the best of our knowledge, no studies have investigated CMS Yamian A in cotton with the genetic background of Australian wild Gossypium bickii. Conjoint transcriptomic and proteomic analysis was first performed between Yamian A and its maintainer Yamian B. Results We detected 550 differentially expressed transcript-derived fragments (TDFs) and at least 1013 proteins in anthers at various developmental stages. Forty-two TDFs and 11 differentially expressed proteins (DEPs) were annotated by analysis in the genomic databases of G. austral, G. arboreum and G. hirsutum. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to better understand the functions of these TDFs and DEPs. Transcriptomic and proteomic results showed that UDP-glucuronosyl/UDP-glucosyltransferase, 60S ribosomal protein L13a-4-like, and glutathione S-transferase were upregulated; while heat shock protein Hsp20, ATPase, F0 complex, and subunit D were downregulated at the microspore abortion stage of Yamian A. In addition, several TDFs from the transcriptome and several DEPs from the proteome were detected and confirmed by quantitative real-time PCR as being expressed in the buds of seven different periods of development. We established the databases of differentially expressed genes and proteins between Yamian A and its maintainer Yamian B in the anthers at various developmental stages and constructed an interaction network based on the databases for a comprehensive understanding of the mechanism underlying CMS with a wild cotton genetic background. Conclusion We first analyzed the molecular mechanism of CMS Yamian A from the perspective of omics, thereby providing an experimental basis and theoretical foundation for future research attempting to analyze the abortion mechanism of new CMS with a wild Gossypium bickii background and to realize three-line matching.

Funder

National Key R&D Program of China

Shanxi Key R&D Program

Anyang Scientific and Technological Project

Science and Technology Planning Project of Henan

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference64 articles.

1. Xie ZM, Su JJ, Dong YM. Advances and reflections on heterosis utilization in cotton. Anhui Agric Sci Bull. 2008;36:7615–7617,7620 (in Chinese).

2. Xing CZ, Jing SR, Xing YH. Review and prospect on cotton heterosis utilization and study in China. Cotton Sci. 2007;19:337–45 (in Chinese).

3. Wang XD. Overview of the study and application of cytoplasmic male sterility in cotton. Sci Agric Sin. 2019;52:1341–54 (in Chinese).

4. Fang X, Fu HF, Gong ZH, Chai WG. Involvement of a universal amino acid synthesis impediment in cytoplasmic male sterility in pepper. Sci Rep. 2016;6:23357.

5. Zhou UL, Zhou Y, Liu ZY, Ji RQ, Feng H. iTRAQ-based proteomic analysis of fertile and sterile flower buds from a genetic male sterile line 'AB01' in Chinese cabbage (Brassica campestris L. ssp. pekinensis). J Proteome. 2019;204:103395.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3