Construction and validation of a prognostic model based on autophagy-related genes for hepatocellular carcinoma in the Asian population

Author:

Wang Yanjie,Huang Sijia,Zhang Yingtian,Cheng Yaping,Dai Liya,Gao Wenwen,Feng Zhengyang,Tao Jialong,Zhang Yusong

Abstract

Abstract Background and objective Hepatocellular carcinoma (HCC), which has a complex pathogenesis and poor prognosis, is one of the most common malignancies worldwide. Hepatitis virus B infection is the most common cause of HCC in Asian patients. Autophagy is the process of digestion and degradation, and studies have shown that autophagy-associated effects are closely related to the development of HCC. In this study, we aimed to construct a prognostic model based on autophagy-related genes (ARGs) for the Asian HCC population to provide new ideas for the clinical management of HCC in the Asian population. Methods The clinical information and transcriptome data of Asian patients with HCC were downloaded from The Cancer Genome Atlas (TCGA) database, and 206 ARGs were downloaded from the human autophagy database (HADB). We performed differential and Cox regression analyses to construct a risk score model. The accuracy of the model was validated by using the Kaplan–Meier (K–M) survival curve, receiver operating characteristic (ROC) curve, and univariate and multivariate Cox independent prognostic analyses. The results Thirteen ARGs that were significantly associated with prognosis were finally identified by univariate and multivariate Cox regression analyses. The K–M survival curves showed that the survival rate of the low-risk group was significantly higher than that of the high-risk group (p < 0.001), and the multi-indicator ROC curves further demonstrated the predictive ability of the model (AUC = 0.877). Conclusion The risk score model based on ARGs was effective in predicting the prognosis of Asian patients with HCC.

Funder

the international team of gastrointestinal tumor project funding

import team of hepatobiliary and pancreatic surgery project funding

the project of State key laboratory of radiation medicine and protection

the second affiliate hospital of Soochow university science and technology innovation team project funding

the Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3