Ontogeny of hepatic metabolism in mule ducks highlights different gene expression profiles between carbohydrate and lipid metabolic pathways

Author:

Massimino William,Davail Stéphane,Secula Aurélie,Andrieux Charlotte,Bernadet Marie-Dominique,Pioche Tracy,Ricaud Karine,Gontier Karine,Morisson Mireille,Collin Anne,Panserat Stéphane,Houssier MarianneORCID

Abstract

Abstract Background The production of foie gras involves different metabolic pathways in the liver of overfed ducks such as lipid synthesis and carbohydrates catabolism, but the establishment of these pathways has not yet been described with precision during embryogenesis. The early environment can have short- and long-term impacts on the physiology of many animal species and can be used to influence physiological responses that is called programming. This study proposes to describe the basal hepatic metabolism at the level of mRNA in mule duck embryos in order to reveal potential interesting programming windows in the context of foie gras production. To this end, a kinetic study was designed to determine the level of expression of selected genes involved in steatosis-related liver functions throughout embryogenesis. The livers of 20 mule duck embryos were collected every 4 days from the 12th day of embryogenesis (E12) until 4 days after hatching (D4), and gene expression analysis was performed. The expression levels of 50 mRNAs were quantified for these 7 sampling points and classified into 4 major cellular pathways. Results Interestingly, most mRNAs involved in lipid metabolism are overexpressed after hatching (FASN, SCD1, ACOX1), whereas genes implicated in carbohydrate metabolism (HK1, GAPDH, GLUT1) and development (HGF, IGF, FGFR2) are predominantly overexpressed from E12 to E20. Finally, regarding cellular stress, gene expression appears quite stable throughout development, contrasting with strong expression after hatching (CYP2E1, HSBP1, HSP90AA1). Conclusion For the first time we described the kinetics of hepatic ontogenesis at mRNA level in mule ducks and highlighted different expression patterns depending on the cellular pathway. These results could be particularly useful in the design of embryonic programming for the production of foie gras.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3