Contrasting new and available reference genomes to highlight uncertainties in assemblies and areas for future improvement: an example with monodontid species

Author:

Bringloe Trevor T.,Parent Geneviève J.

Abstract

Abstract Background Reference genomes provide a foundational framework for evolutionary investigations, ecological analysis, and conservation science, yet uncertainties in the assembly of reference genomes are difficult to assess, and by extension rarely quantified. Reference genomes for monodontid cetaceans span a wide spectrum of data types and analytical approaches, providing the context to derive broader insights related to discrepancies and regions of uncertainty in reference genome assembly. We generated three beluga (Delphinapterus leucas) and one narwhal (Monodon monoceros) reference genomes and contrasted these with published chromosomal scale assemblies for each species to quantify discrepancies associated with genome assemblies. Results The new reference genomes achieved chromosomal scale assembly using a combination of PacBio long reads, Illumina short reads, and Hi-C scaffolding data. For beluga, we identified discrepancies in the order and orientation of contigs in 2.2–3.7% of the total genome depending on the pairwise comparison of references. In addition, unsupported higher order scaffolding was identified in published reference genomes. In contrast, we estimated 8.2% of the compared narwhal genomes featured discrepancies, with inversions being notably abundant (5.3%). Discrepancies were linked to repetitive elements in both species. Conclusions We provide several new reference genomes for beluga (Delphinapterus leucas), while highlighting potential avenues for improvements. In particular, additional layers of data providing information on ultra-long genomic distances are needed to resolve persistent errors in reference genome construction. The comparative analyses of monodontid reference genomes suggested that the three new reference genomes for beluga are more accurate compared to the currently published reference genome, but that the new narwhal genome is less accurate than one published. We also present a conceptual summary for improving the accuracy of reference genomes with relevance to end-user needs and how they relate to levels of assembly quality and uncertainty.

Funder

Department of Fisheries and Oceans Canada

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3