Genome-wide identification of biotin carboxyl carrier subunits of acetyl-CoA carboxylase in Brassica and their role in stress tolerance in oilseed Brassica napus

Author:

Megha Swati,Wang Zhengping,Kav Nat N. V.,Rahman Habibur

Abstract

Abstract Background Biotin carboxyl carrier protein (BCCP) is a subunit of Acetyl CoA-carboxylase (ACCase) which catalyzes the conversion of acetyl-CoA to malonyl-CoA in a committed step during the de novo biosynthesis of fatty acids. Lipids, lipid metabolites, lipid-metabolizing and -modifying enzymes are known to play a role in biotic and abiotic stress tolerance in plants. In this regard, an understanding of the Brassica napus BCCP genes will aid in the improvement of biotic and abiotic stress tolerance in canola. Results In this study, we identified 43 BCCP genes in five Brassica species based on published genome data. Among them, Brassica rapa, Brassica oleracea, Brassica nigra, Brassica napus and Brassica juncea had six, seven, seven, 10 and 13 BCCP homologs, respectively. Phylogenetic analysis categorized them into five classes, each with unique conserved domains. The promoter regions of all BCCP genes contained stress-related cis-acting elements as determined by cis-element analysis. We identified four and three duplicated gene pairs (segmental) in B. napus and B. juncea respectively, indicating the role of segmental duplication in the expansion of this gene family. The Ka/Ks ratios of orthologous gene pairs between Arabidopsis thaliana and five Brassica species were mostly less than 1.0, implying that purifying selection, i.e., selective removal of deleterious alleles, played a role during the evolution of Brassica genomes. Analysis of 10 BnaBCCP genes using qRT-PCR showed a different pattern of expression because of exposure of the plants to biotic stresses, such as clubroot and sclerotinia diseases, and abiotic stresses such as drought, low temperature and salinity stresses. Conclusions The identification and functional analysis of the Brassica BCCPs demonstrated that some of these genes might play important roles in biotic and abiotic stress responses. Results from this study could lay the foundation for a better understanding of these genes for the improvement of Brassica crops for stress tolerance.

Funder

Alberta Innovates Bio Solutions

Alberta Canola Producers Commission

Results Driven Agriculture Research

Saskatchewan Canola Development Commission

Manitoba Canola Growers

Agriculture and Agri-Food Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3