Author:
Zeng Zhichi,Zhang Sichen,Li Wenyan,Chen Baoshan,Li Wenlan
Abstract
Abstract
Background
When plants are subjected to cold stress, they undergo a series of molecular and physiological changes to protect themselves from injury. Indica cultivars can usually withstand only mild cold stress in a relatively short period. Hormone-mediated defence response plays an important role in cold stress. Weighted gene co-expression network analysis (WGCNA) is a very useful tool for studying the correlation between genes, identifying modules with high phenotype correlation, and identifying Hub genes in different modules. Many studies have elucidated the molecular mechanisms of cold tolerance in different plants, but little information about the recovery process after cold stress is available.
Results
To understand the molecular mechanism of cold tolerance in rice, we performed comprehensive transcriptome analyses during cold treatment and recovery stage in two cultivars of near-isogenic lines (9311 and DC907). Twelve transcriptomes in two rice cultivars were determined. A total of 2509 new genes were predicted by fragment splicing and assembly, and 7506 differentially expressed genes were identified by pairwise comparison. A total of 26 modules were obtained by expression-network analysis, 12 of which were highly correlated with cold stress or recovery treatment. We further identified candidate Hub genes associated with specific modules and analysed their regulatory relationships based on coexpression data. Results showed that various plant-hormone regulatory genes acted together to protect plants from physiological damage under short-term low-temperature stress. We speculated that this may be common in rice. Under long-term cold stress, rice improved the tolerance to low-temperature stress by promoting autophagy, sugar synthesis, and metabolism.
Conclusion
Through WGCNA analysis at the transcriptome level, we provided a potential regulatory mechanism for the cold stress and recovery of rice cultivars and identified candidate central genes. Our findings provided an important reference for the future cultivation of rice strains with good tolerance.
Publisher
Springer Science and Business Media LLC
Reference94 articles.
1. International Rice Genome Sequencing P. The map-based sequence of the rice genome. Nature. 2005;436(7052):793–800.
2. Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 2002;296(5565):92–100 %@ 0036–8075.
3. Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). science. 2002;296(5565):79–92 %@ 0036–8075.
4. Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, et al. A map of rice genome variation reveals the origin of cultivated rice. Nature. 2012;490(7421):497–501.
5. Bevilacqua CB, Basu S, Pereira A, Tseng TM, Zimmer PD, Burgos NR. Analysis of stress-responsive gene expression in cultivated and weedy rice differing in cold stress tolerance. PloS one. 2015;10(7):e0132100.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献