Author:
Du Yu,Wang Yong,Xu Qing,Zhu Jiangjiang,Lin Yaqiu
Abstract
Abstract
Background
Intramuscular adipocytes differentiation is a complex process, which is regulated by various transcription factor, protein factor regulators and signal transduction pathways. However, the proteins and signal pathways that regulates goat intramuscular adipocytes differentiation remains unclear.
Result
In this study, based on nanoscale liquid chromatography mass spectrometry analysis (LC-MS/MS), the tandem mass tag (TMT) labeling analysis was used to investigate the differentially abundant proteins (DAPs) related with the differentiation process of goat intramuscular adipocytes. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes enrichment and protein-protein interaction network analyses were performed for the characterization of the identified DAPs. The candidate proteins were verified by parallel reaction monitoring analysis. As a result, a total of 123 proteins, 70 upregulation proteins and 53 downregulation proteins, were identified as DAPs which may be related with the differentiation process of goat intramuscular adipocytes. Furthermore, the cholesterol metabolism pathway, glucagon signaling pathway and glycolysis / gluconeogenesis pathway were noticed that may be the important signal pathways for goat Intramuscular adipocytes differentiation.
Conclusions
By proteomic comparison between goat intramuscular preadipocytes (P_IMA) and intramuscular adipocytes (IMA), we identified a series protein that might play important role in the goat intramuscular fat differentiation, such as SRSF10, CSRP3, APOH, PPP3R1, CRTC2, FOS, SERPINE1 and AIF1L, could serve as candidates for further elucidate the molecular mechanism of IMF differentiation in goats.
Funder
National Natural Sciences Foundation of china
National Natural Sciences Foundation of China
Publisher
Springer Science and Business Media LLC
Reference66 articles.
1. Baik M, Kang HJ, Park SJ, Na SW, Piao M, Kim SY, et al. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Molecular mechanisms related to bovine intramuscular fat deposition in the longissimus muscle. J Anim Sci. 2017;95:2284–303.
2. Liu K, Yu W, Wei W, Zhang X, Tian Y, Sherif M, et al. Melatonin reduces intramuscular fat deposition by promoting lipolysis and increasing mitochondrial function. J Lipid Res. 2019;60:767–82.
3. Nishimura T, Hattori A, Takahashi K. Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: effect of marbling on beef tenderization. J Anim Sci. 1999;77:93–104.
4. Zhao X-H, Yang Z-Q, Bao L-B, Wang C-Y, -Zhou S, Gong J-M, et al. Daidzein enhances intramuscular fat deposition and improves meat quality in finishing steers. Exp Biol Med (Maywood). 2015;240:1152–7.
5. Hocquette JF, Gondret F, Baéza E, Médale F, Jurie C, Pethick DW. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal. 2010;4:303–19.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献