Sketch distance-based clustering of chromosomes for large genome database compression

Author:

Tang Tao,Liu Yuansheng,Zhang Buzhong,Su Benyue,Li Jinyan

Abstract

Abstract Background The rapid development of Next-Generation Sequencing technologies enables sequencing genomes with low cost. The dramatically increasing amount of sequencing data raised crucial needs for efficient compression algorithms. Reference-based compression algorithms have exhibited outstanding performance on compressing single genomes. However, for the more challenging and more useful problem of compressing a large collection of n genomes, straightforward application of these reference-based algorithms suffers a series of issues such as difficult reference selection and remarkable performance variation. Results We propose an efficient clustering-based reference selection algorithm for reference-based compression within separate clusters of the n genomes. This method clusters the genomes into subsets of highly similar genomes using MinHash sketch distance, and uses the centroid sequence of each cluster as the reference genome for an outstanding reference-based compression of the remaining genomes in each cluster. A final reference is then selected from these reference genomes for the compression of the remaining reference genomes. Our method significantly improved the performance of the-state-of-art compression algorithms on large-scale human and rice genome databases containing thousands of genome sequences. The compression ratio gain can reach up to 20-30% in most cases for the datasets from NCBI, the 1000 Human Genomes Project and the 3000 Rice Genomes Project. The best improvement boosts the performance from 351.74 compression folds to 443.51 folds. Conclusions The compression ratio of reference-based compression on large scale genome datasets can be improved via reference selection by applying appropriate data preprocessing and clustering methods. Our algorithm provides an efficient way to compress large genome database.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3