Identification of long non-coding RNAs and microRNAs involved in anther development in the tropical Camellia oleifera

Author:

Kong Lingshan,Zhuo Yanjing,Xu Jieru,Meng Xiangxu,Wang Yue,Zhao Wenxiu,Lai Hanggui,Chen Jinhui,Wang Jian

Abstract

Abstract Background Explored the molecular science of anther development is important for improving productivity and overall yield of crops. Although the role of regulatory RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), in regulating anther development has been established, their identities and functions in Camellia oleifera, an important industrial crop, have yet not been clearly explored. Here, we report the identification and characterization of genes, lncRNAs and miRNAs during three stages of the tropical C. oleifera anther development by single-molecule real-time sequencing, RNA sequencing and small RNA sequencing, respectively. Results These stages, viz. the pollen mother cells stage, tetrad stage and uninucleate pollen stage, were identified by analyzing paraffin sections of floral buds during rapid expansion periods. A total of 18,393 transcripts, 414 putative lncRNAs and 372 miRNAs were identified, of which 5,324 genes, 115 lncRNAs, and 44 miRNAs were differentially accumulated across three developmental stages. Of these, 44 and 92 genes were predicted be regulated by 37 and 30 differentially accumulated lncRNAs and miRNAs, respectively. Additionally, 42 differentially accumulated lncRNAs were predicted as targets of 27 miRNAs. Gene ontology enrichment indicated that potential target genes of lncRNAs were enriched in photosystem II, regulation of autophagy and carbohydrate phosphatase activity, which are essential for anther development. Functional annotation of genes targeted by miRNAs indicated that they are relevant to transcription and metabolic processes that play important roles in microspore development. An interaction network was built with 2 lncRNAs, 6 miRNAs and 10 mRNAs. Among these, miR396 and miR156 family were up-regulated, while their targets, genes (GROWTH REGULATING FACTORS and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes) and lncRNAs, were down-regulated. Further, the trans-regulated targets of these lncRNAs, like wall-associated kinase2 and phosphomannose isomerase1, are involved in pollen wall formation during anther development. Conclusions This study unravels lncRNAs, miRNAs and miRNA-lncRNA-mRNA networks involved in development of anthers of the tropical C. oleifera lays a theoretical foundation for further elucidation of regulatory roles of lncRNAs and miRNAs in anther development.

Funder

the Scientific Research Fund Project of Hainan University

Hainan Province Science and Technology Special Fund

Demonstration Funds for the Promotion of Forestry Science and Technology from the Central Government

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3