Transcriptome analysis reveals molecular mechanisms responsive to acute cold stress in the tropical stenothermal fish tiger barb (Puntius tetrazona)

Author:

Liu Lili,Zhang Rong,Wang Xiaowen,Zhu HuaORCID,Tian Zhaohui

Abstract

Abstract Background Tropical stenothermal fish exhibit special tolerance and response to cold stress. However current knowledge of the molecular mechanisms response to cold stress in aquatic ectotherms is largely drawn from eurythermal or extreme stenothermal species. The tiger barb Puntius tetrazona is a tropical stenothermal fish, with great popularity in aquarium trade and research. Results To investigate the response mechanism of P. tetrazona to low temperature, fish were exposed to increasing levels of acute cold stress. Histopathological analysis showed that the brain, gill, liver and muscle tissues appeared serious damage after cold stress (13 °C). Brain, gill, liver and muscle tissues from control (CTRL) groups (27 °C) and COLD stress groups (13 °C) of eight-month fish (gender-neutral) were sampled and assessed for transcriptomic profiling by high-throughput sequencing. 83.0 Gb of raw data were generated, filtered and assembled for de novo transcriptome assembly. According to the transcriptome reference, we obtained 392,878 transcripts and 238,878 unigenes, of which 89.29% of the latter were annotated. There were 23,743 differently expressed genes (DEGs) been filtered from four pairs of tissues (brain, gill, liver and muscle) between these cold stress and control groups. These DEGs were mainly involved in circadian entrainment, circadian rhythm, biosynthesis of steroid and fatty acid. There were 64 shared DEGs between the four pairs of groups, and five were related to ubiquitylation/deubiquitylation. Our results suggested that ubiquitin-mediated protein degradation might be necessary for tropical stenothermal fish coping with acute cold stress. Also, the significant cold-induced expression of heat shock 70 kDa protein (HSP70) and cold-induced RNA-binding protein (CIRBP) was verified. These results suggested that the expression of the molecular chaperones HSP70 and CIRBP in P. tetrazona might play a critical role in coping with acute cold stress. Conclusions This is the first transcriptome analysis of P. tetrazona using RNA-Seq technology. Novel findings about tropical stenothermal fish under cold stress (such as HSP70 and CIRBP genes) are presented here. This study contributes new insights into the molecular mechanisms of tropical stenothermal species response to acute cold stress.

Funder

Beijing Natural Science Foundation

Beijing Postdoctoral Research Foundation

Beijing Innovation Team of Ornamental Fish Industry Technology System

Earmarked Fund for China Agriculture Research System

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3