Change point detection for clustered expression data

Author:

Sieg Miriam,Sciesielski Lina Katrin,Kirschner Karin Michaela,Kruppa Jochen

Abstract

Abstract Background To detect changes in biological processes, samples are often studied at several time points. We examined expression data measured at different developmental stages, or more broadly, historical data. Hence, the main assumption of our proposed methodology was the independence between the examined samples over time. In addition, however, the examinations were clustered at each time point by measuring littermates from relatively few mother mice at each developmental stage. As each examination was lethal, we had an independent data structure over the entire history, but a dependent data structure at a particular time point. Over the course of these historical data, we wanted to identify abrupt changes in the parameter of interest - change points. Results In this study, we demonstrated the application of generalized hypothesis testing using a linear mixed effects model as a possible method to detect change points. The coefficients from the linear mixed model were used in multiple contrast tests and the effect estimates were visualized with their respective simultaneous confidence intervals. The latter were used to determine the change point(s). In small simulation studies, we modelled different courses with abrupt changes and compared the influence of different contrast matrices. We found two contrasts, both capable of answering different research questions in change point detection: The Sequen contrast to detect individual change points and the McDermott contrast to find change points due to overall progression. We provide the R code for direct use with provided examples. The applicability of those tests for real experimental data was shown with in-vivo data from a preclinical study. Conclusion Simultaneous confidence intervals estimated by multiple contrast tests using the model fit from a linear mixed model were capable to determine change points in clustered expression data. The confidence intervals directly delivered interpretable effect estimates representing the strength of the potential change point. Hence, scientists can define biologically relevant threshold of effect strength depending on their research question. We found two rarely used contrasts best fitted for detection of a possible change point: the Sequen and McDermott contrasts.

Funder

Deutsche Forschungsgemeinschaft

Charité - Universitätsmedizin Berlin

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3