Abstract
Abstract
Background
Salinity has obvious effects on plant growth and crop productivity. The salinity-responsive mechanisms have been well-studied in differentiated organs (e.g., leaves, roots and stems), but not in unorganized cells such as callus. High-throughput quantitative proteomics approaches have been used to investigate callus development, somatic embryogenesis, organogenesis, and stress response in numbers of plant species. However, they have not been applied to callus from monocotyledonous halophyte alkaligrass (Puccinellia tenuifora).
Results
The alkaligrass callus growth, viability and membrane integrity were perturbed by 50 mM and 150 mM NaCl treatments. Callus cells accumulated the proline, soluble sugar and glycine betaine for the maintenance of osmotic homeostasis. Importantly, the activities of ROS scavenging enzymes (e.g., SOD, APX, POD, GPX, MDHAR and GR) and antioxidants (e.g., ASA, DHA and GSH) were induced by salinity. The abundance patterns of 55 salt-responsive proteins indicate that salt signal transduction, cytoskeleton, ROS scavenging, energy supply, gene expression, protein synthesis and processing, as well as other basic metabolic processes were altered in callus to cope with the stress.
Conclusions
The undifferentiated callus exhibited unique salinity-responsive mechanisms for ROS scavenging and energy supply. Activation of the POD pathway and AsA-GSH cycle was universal in callus and differentiated organs, but salinity-induced SOD pathway and salinity-reduced CAT pathway in callus were different from those in leaves and roots. To cope with salinity, callus mainly relied on glycolysis, but not the TCA cycle, for energy supply.
Funder
the Natural and Science Foundation of Heilongjiang Provence
Fundamental Research Funds for the Central Universities
Foundation of Shanghai Science and Technology Committee, China
Fund of Shanghai Engineering Research Center of Plant Germplasm Resources
Publisher
Springer Science and Business Media LLC