Integrated omic profiling of the medicinal mushroom Inonotus obliquus under submerged conditions

Author:

Hao Jinghua,Wang Xiaoli,Shi Yanhua,Li Lingjun,Chu Jinxin,Li Junjie,Lin Weiping,Yu Tao,Hou Dianhai

Abstract

Abstract Background The Inonotus obliquus mushroom, a wondrous fungus boasting edible and medicinal qualities, has been widely used as a folk medicine and shown to have many potential pharmacological secondary metabolites. The purpose of this study was to supply a global landscape of genome-based integrated omic analysis of the fungus under lab-growth conditions. Results This study presented a genome with high accuracy and completeness using the Pacbio Sequel II third-generation sequencing method. The de novo assembled fungal genome was 36.13 Mb, and contained 8352 predicted protein-coding genes, of which 365 carbohydrate-active enzyme (CAZyme)-coding genes and 19 biosynthetic gene clusters (BCGs) for secondary metabolites were identified. Comparative transcriptomic and proteomic analysis revealed a global view of differential metabolic change between seed and fermentation culture, and demonstrated positive correlations between transcription and expression levels of 157 differentially expressed genes involved in the metabolism of amino acids, fatty acids, secondary metabolites, antioxidant and immune responses. Facilitated by the widely targeted metabolomic approach, a total of 307 secondary substances were identified and quantified, with a significant increase in the production of antioxidant polyphenols. Conclusion This study provided the comprehensive analysis of the fungus Inonotus obliquus, and supplied fundamental information for further screening of promising target metabolites and exploring the link between the genome and metabolites.

Funder

Weifang science and technology development project

National Natural Science Foundation of China

Doctoral Fund of Weifang Medical University

Shandong Provincial Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3