Predicting metabolic pathway membership with deep neural networks by integrating sequential and ontology information

Author:

Cartealy Imam,Liao LiORCID

Abstract

Abstract Background Inference of protein’s membership in metabolic pathways has become an important task in functional annotation of protein. The membership information can provide valuable context to the basic functional annotation and also aid reconstruction of incomplete pathways. Previous works have shown success of inference by using various similarity measures of gene ontology. Results In this work, we set out to explore integrating ontology and sequential information to further improve the accuracy. Specifically, we developed a neural network model with an architecture tailored to facilitate the integration of features from different sources. Furthermore, we built models that are able to perform predictions from pathway-centric or protein-centric perspectives. We tested the classifiers using 5-fold cross validation for all metabolic pathways reported in KEGG database. Conclusions The testing results demonstrate that by integrating ontology and sequential information with a tailored architecture our deep neural network method outperforms the existing methods significantly in the pathway-centric mode, and in the protein-centric mode, our method either outperforms or performs comparably with a suite of existing GO term based semantic similarity methods.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3