An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern

Author:

Zimmerman Shawna J.ORCID,Aldridge Cameron L.,Oyler-McCance Sara J.

Abstract

Abstract Background Use of genomic tools to characterize wildlife populations has increased in recent years. In the past, genetic characterization has been accomplished with more traditional genetic tools (e.g., microsatellites). The explosion of genomic methods and the subsequent creation of large SNP datasets has led to the promise of increased precision in population genetic parameter estimates and identification of demographically and evolutionarily independent groups, as well as questions about the future usefulness of the more traditional genetic tools. At present, few empirical comparisons of population genetic parameters and clustering analyses performed with microsatellites and SNPs have been conducted. Results Here we used microsatellite and SNP data generated from Gunnison sage-grouse (Centrocercus minimus) samples to evaluate concordance of the results obtained from each dataset for common metrics of genetic diversity (HO, HE, FIS, AR) and differentiation (FST, GST, DJost). Additionally, we evaluated clustering of individuals using putatively neutral (SNPs and microsatellites), putatively adaptive, and a combined dataset of putatively neutral and adaptive loci. We took particular interest in the conservation implications of any differences. Generally, we found high concordance between microsatellites and SNPs for HE, FIS, AR, and all differentiation estimates. Although there was strong correlation between metrics from SNPs and microsatellites, the magnitude of the diversity and differentiation metrics were quite different in some cases. Clustering analyses also showed similar patterns, though SNP data was able to cluster individuals into more distinct groups. Importantly, clustering analyses with SNP data suggest strong demographic independence among the six distinct populations of Gunnison sage-grouse with some indication of evolutionary independence in two or three populations; a finding that was not revealed by microsatellite data. Conclusion We demonstrate that SNPs have three main advantages over microsatellites: more precise estimates of population-level diversity, higher power to identify groups in clustering methods, and the ability to consider local adaptation. This study adds to a growing body of work comparing the use of SNPs and microsatellites to evaluate genetic diversity and differentiation for a species of conservation concern with relatively high population structure and using the most common method of obtaining SNP genotypes for non-model organisms.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3