Molecular genetic diversity and linkage disequilibrium structure of the Egyptian faba bean using Single Primer Enrichment Technology (SPET)

Author:

Sallam Ahmed,Amro Ahmed,Mourad Amira M. I.,Rafeek Abdallah,Boerner Andreas,Eltaher Shamaseldeen

Abstract

AbstractFaba bean is an important legume crop. The genetic diversity among faba bean genotypes is very important for the genetic improvement of target traits. A set of 128 fab bean genotypes that are originally from Egypt were used in this study to investigate the genetic diversity and population structure. The 128 genotypes were genotyped using the Single Primer Enrichment Technology (SPET) by which a set of 6759 SNP markers were generated after filtration. The SNP markers were distributed on all chromosomes with a range extending from 822 (Chr. 6) to 1872 (Chr.1). The SNP markers had wide ranges of polymorphic information content (PIC), gene diversity (GD), and minor allele frequency. The analysis of population structure divided the Egyptian faba bean population into five subpopulations. Considerable genetic distance was found among all genotypes, ranging from 0.1 to 0.4. The highly divergent genotype was highlighted in this study and the genetic distance among genotypes ranged from 0.1 and 0.6. Moreover, the structure of linkage disequilibrium was studied, and the analysis revealed a low level of LD in the Egyptian faba bean population. A slow LD decay at the genomic and chromosomal levels was observed. Interestingly, the distribution of haplotype blocks was presented in each chromosome and the number of haplotype block ranged from 65 (Chr. 4) to 156 (Chr. 1). Migration and genetic drift are the main reasons for the low LD in the Egyptian faba bean population. The results of this study shed light on the possibility of the genetic improvement of faba bean crop in Egypt and conducting genetic association analyses to identify candidate genes associated with target traits (e.g. protein content, grain yield, etc.) in this panel.

Funder

Academy of Scientific Research and Technology

Science and Technology Development Fund

Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK)

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3