Abstract
Abstract
Background
GGPP (geranylgeranyl diphosphate) is produced in the isoprenoid pathway and mediates the function of various plant metabolites, which is synthesized by GGPPS (GGPP synthases) in plants. GGPPS characterization has not been performed in any plant species except Arabidopsis thaliana. Here, we performed a complete computational and bioinformatics analysis of GGPPS and detected their transcription expression pattern in Gossypium hirsutum for the first time so that to explore their evolutionary relationship and potential functions. Finally, we unravelled evolutionary relationship, conserved sequence logos, gene duplication and potential involvement in plant development and abiotic stresses tolerance of GGPPS genes in G. hirsutum and other plant species.
Results
A total of 159 GGPPS genes from 18 plant species were identified and evolutionary analysis divided these GGPPS genes into five groups to indicate their divergence from a common ancestor. Further, GGPPS family genes were conserved during evolution and underwent segmental duplication. The identified 25 GhGGPPS genes showed diverse expression pattern particularly in ovule and fiber development indicating their vital and divers roles in the fiber development. Additionally, GhGGPPS genes exhibited wide range of responses when subjected to abiotic (heat, cold, NaCl and PEG) stresses and hormonal (BL, GA, IAA, SA and MeJA) treatments, indicating their potential roles in various biotic and abiotic stresses tolerance.
Conclusions
The GGPPS genes are evolutionary conserved and might be involve in different developmental stages and stress response. Some potential key genes (e.g. GhGGPP4, GhGGPP9, and GhGGPP15) were suggested for further study and provided valuable source for cotton breeding to improve fiber quality and resistant to various stresses.
Funder
Major Research Plan of the National Natural Science Foundation of China
Creative Research Groups of China
Zhengzhou University
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Bouvier F, Rahier A, Camara B. Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res. 2005;44(6):357–429.
2. Liang P-H. Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry. 2009;48(28):6562–70.
3. Vranová E, Coman D, Gruissem W. Structure and dynamics of the isoprenoid pathway network. Mol Plant. 2012;5(2):318–33.
4. Beck G, Coman D, Herren E, Ruiz-Sola MA, Rodríguez-Concepción M, Gruissem W, et al. Characterization of the GGPP synthase gene family in Arabidopsis thaliana. Plant Mol Biol. 2013;82(4–5):393–416.
5. Vandermoten S, Haubruge É, Cusson M. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci. 2009;66(23):3685–95.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献