Assessment of databases to determine the validity of β- and γ-carbonic anhydrase sequences from vertebrates

Author:

Zolfaghari Emameh RezaORCID,Kuuslahti Marianne,Nosrati Hassan,Lohi Hannes,Parkkila Seppo

Abstract

Abstract Background The inaccuracy of DNA sequence data is becoming a serious problem, as the amount of molecular data is multiplying rapidly and expectations are high for big data to revolutionize life sciences and health care. In this study, we investigated the accuracy of DNA sequence data from commonly used databases using carbonic anhydrase (CA) gene sequences as generic targets. CAs are ancient metalloenzymes that are present in all unicellular and multicellular living organisms. Among the eight distinct families of CAs, including α, β, γ, δ, ζ, η, θ, and ι, only α-CAs have been reported in vertebrates. Results By an in silico analysis performed on the NCBI and Ensembl databases, we identified several β- and γ-CA sequences in vertebrates, including Homo sapiens, Mus musculus, Felis catus, Lipotes vexillifer, Pantholops hodgsonii, Hippocampus comes, Hucho hucho, Oncorhynchus tshawytscha, Xenopus tropicalis, and Rhinolophus sinicus. Polymerase chain reaction (PCR) analysis of genomic DNA persistently failed to amplify positive β- or γ-CA gene sequences when Mus musculus and Felis catus DNA samples were used as templates. Further BLAST homology searches of the database-derived “vertebrate” β- and γ-CA sequences revealed that the identified sequences were presumably derived from gut microbiota, environmental microbiomes, or grassland ecosystems. Conclusions Our results highlight the need for more accurate and fast curation systems for DNA databases. The mined data must be carefully reconciled with our best knowledge of sequences to improve the accuracy of DNA data for publication.

Funder

National Institute for Genetic Engineering and Biotechnology

Academy of Finland

Jane ja Aatos Erkon Säätiö

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3