Next-generation fungal identification using target enrichment and Nanopore sequencing

Author:

Yu Pei-Ling,Fulton James C.,Hudson Owen H.,Huguet-Tapia Jose C.,Brawner Jeremy T.

Abstract

Abstract Background Rapid and accurate pathogen identification is required for disease management. Compared to sequencing entire genomes, targeted sequencing may be used to direct sequencing resources to genes of interest for microbe identification and mitigate the low resolution that single-locus molecular identification provides. This work describes a broad-spectrum fungal identification tool developed to focus high-throughput Nanopore sequencing on genes commonly employed for disease diagnostics and phylogenetic inference. Results Orthologs of targeted genes were extracted from 386 reference genomes of fungal species spanning six phyla to identify homologous regions that were used to design the baits used for enrichment. To reduce the cost of producing probes without diminishing the phylogenetic power, DNA sequences were first clustered, and then consensus sequences within each cluster were identified to produce 26,000 probes that targeted 114 genes. To test the efficacy of our probes, we applied the technique to three species representing Ascomycota and Basidiomycota fungi. The efficiency of enrichment, quantified as mean target coverage over the mean genome-wide coverage, ranged from 200 to 300. Furthermore, enrichment of long reads increased the depth of coverage across the targeted genes and into non-coding flanking sequence. The assemblies generated from enriched samples provided well-resolved phylogenetic trees for taxonomic assignment and molecular identification. Conclusions Our work provides data to support the utility of targeted Nanopore sequencing for fungal identification and provides a platform that may be extended for use with other phytopathogens.

Funder

U.S. Department of Agriculture’s Tactical Sciences for Agricultural Biosecurity program

U.S. Department of Agriculture McIntire Stennis project

Research office of the University of Florida’s Institute for Food and Agricultural Science

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3