Physiological and transcriptomic analyses reveal tea plant (Camellia sinensis L.) adapts to extreme freezing stress during winter by regulating cell wall structure

Author:

Luo Jinlei,Huang Shuangjie,Chang Yali,Li Hui,Guo Guiyi

Abstract

AbstractTea plants grown in high-latitude areas are often damaged by extreme freezing temperatures in winter, leading to huge economic losses. Here, the physiological and gene expression characteristics of two tea cultivars (Xinyang No. 10 (XY10), a freezing-tolerant cultivar and Fudingdabaicha (FDDB), a freezing-sensitive cultivar) during overwintering in northern China were studied to better understand the regulation mechanisms of tea plants in response to natural freezing stress. Samples were collected at a chill (D1), freezing (D2) and recovery (D3) temperature in winter. TEM analysis of integrated leaf ultrastructure at D2 revealed lower malondialdehyde and relative electrical conductivity in XY10 than in FDDB, with serious cell structure damage in the latter, indicating XY10 was more resistant to freezing stress. Differential gene expression analysis among the different samples over winter time highlighted the following gene functions in cell wall metabolism (CesAs, COBLs, XTHs, PGs, PMEs), transcription factors (ERF1B and MYC2), and signal transduction (CDPKs and CMLs). The expression pattern of cellulose and pectin-related genes suggested higher accumulation of cellulosic and pectic materials in the cell wall of XY10, agreeing with the results of cell wall and its components. These results indicated that under the regulation of cell wall genes, the freezing-resistant tea cultivar can better maintain a well-knit cell wall structure with sufficient substances to survive natural freezing damage. This study demonstrated the crucial role of cell wall in tea plant resistance to natural freezing stress and provided important candidate genes for breeding of freezing-resistant tea cultivars.

Funder

Science and Technology Project of Henan Province

Key Scientific Research Project of Colleges and Universities in Henan Province

High-level Incubator Construction Project of Xinyang Agriculture and Forestry University

Youth Fund Projects of Xinyang Agriculture and Forestry University

Natural Science Foundation of Henan Province

National Key Research and Development Program of China

Tea Science and Technology Innovation Team of Xinyang Agriculture and Forestry University

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3