Spatial and temporal characterization of the rich fraction of plastid DNA present in the nuclear genome of Moringa oleifera reveals unanticipated complexity in NUPTs´ formation

Author:

Marczuk-Rojas Juan PabloORCID,Álamo-Sierra Angélica María,Salmerón AntonioORCID,Alcayde AlfredoORCID,Isanbaev Viktor,Carretero-Paulet LorenzoORCID

Abstract

Abstract Background Beyond the massive amounts of DNA and genes transferred from the protoorganelle genome to the nucleus during the endosymbiotic event that gave rise to the plastids, stretches of plastid DNA of varying size are still being copied and relocated to the nuclear genome in a process that is ongoing and does not result in the concomitant shrinking of the plastid genome. As a result, plant nuclear genomes feature small, but variable, fraction of their genomes of plastid origin, the so-called nuclear plastid DNA sequences (NUPTs). However, the mechanisms underlying the origin and fixation of NUPTs are not yet fully elucidated and research on the topic has been mostly focused on a limited number of species and of plastid DNA. Results Here, we leveraged a chromosome-scale version of the genome of the orphan crop Moringa oleifera, which features the largest fraction of plastid DNA in any plant nuclear genome known so far, to gain insights into the mechanisms of origin of NUPTs. For this purpose, we examined the chromosomal distribution and arrangement of NUPTs, we explicitly modeled and tested the correlation between their age and size distribution, we characterized their sites of origin at the chloroplast genome and their sites of insertion at the nuclear one, as well as we investigated their arrangement in clusters. We found a bimodal distribution of NUPT relative ages, which implies NUPTs in moringa were formed through two separate events. Furthermore, NUPTs from every event showed markedly distinctive features, suggesting they originated through distinct mechanisms. Conclusions Our results reveal an unanticipated complexity of the mechanisms at the origin of NUPTs and of the evolutionary forces behind their fixation and highlight moringa species as an exceptional model to assess the impact of plastid DNA in the evolution of the architecture and function of plant nuclear genomes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3