The massive 340 megabase genome of Anisogramma anomala, a biotrophic ascomycete that causes eastern filbert blight of hazelnut

Author:

Cohen Alanna B.,Cai Guohong,Price Dana C.,Molnar Thomas J.,Zhang Ning,Hillman Bradley I.

Abstract

Abstract Background The ascomycete fungus Anisogramma anomala causes Eastern Filbert Blight (EFB) on hazelnut (Corylus spp.) trees. It is a minor disease on its native host, the American hazelnut (C. americana), but is highly destructive on the commercially important European hazelnut (C. avellana). In North America, EFB has historically limited commercial production of hazelnut to west of the Rocky Mountains. A. anomala is an obligately biotrophic fungus that has not been grown in continuous culture, rendering its study challenging. There is a 15-month latency before symptoms appear on infected hazelnut trees, and only a sexual reproductive stage has been observed. Here we report the sequencing, annotation, and characterization of its genome. Results The genome of A. anomala was assembled into 108 scaffolds totaling 342,498,352 nt with a GC content of 34.46%. Scaffold N50 was 33.3 Mb and L50 was 5. Nineteen scaffolds with lengths over 1 Mb constituted 99% of the assembly. Telomere sequences were identified on both ends of two scaffolds and on one end of another 10 scaffolds. Flow cytometry estimated the genome size of A. anomala at 370 Mb. The genome exhibits two-speed evolution, with 93% of the assembly as AT-rich regions (32.9% GC) and the other 7% as GC-rich (57.1% GC). The AT-rich regions consist predominantly of repeats with low gene content, while 90% of predicted protein coding genes were identified in GC-rich regions. Copia-like retrotransposons accounted for more than half of the genome. Evidence of repeat-induced point mutation (RIP) was identified throughout the AT-rich regions, and two copies of the rid gene and one of dim-2, the key genes in the RIP mutation pathway, were identified in the genome. Consistent with its homothallic sexual reproduction cycle, both MAT1-1 and MAT1-2 idiomorphs were found. We identified a large suite of genes likely involved in pathogenicity, including 614 carbohydrate active enzymes, 762 secreted proteins and 165 effectors. Conclusions This study reveals the genomic structure, composition, and putative gene function of the important pathogen A. anomala. It provides insight into the molecular basis of the pathogen’s life cycle and a solid foundation for studying EFB.

Funder

New Jersey Agricultural Experiment Station

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3