Author:
Wang Huan,Jia Jia,Cai Zhandong,Duan Mingming,Jiang Ze,Xia Qiuju,Ma Qibin,Lian Tengxiang,Nian Hai
Abstract
Abstract
Background
Deciphering the hereditary mechanism of seed iron (Fe) and zinc (Zn) content in soybean is important and sustainable to address the “hidden hunger” that presently affects approximately 2 billion people worldwide. Therefore, in order to detect genomic regions related to soybean seed Fe and Zn content, a recombinant inbred line (RIL) population with 248 lines was assessed in four environments to detect Quantitative Trait Loci (QTLs) related to soybean seed Fe and Zn content.
Result
Wide variation was found in seed Fe and Zn content in four environments, and genotype, environment, and genotype × environment interactions had significant influences on both the seed Fe and Zn content. A positive correlation was observed between seed Fe content and seed Zn content, and broad-sense heritability (H2) of seed Fe and Zn content were 0.73 and 0.75, respectively. In this study, five QTLs for seed Fe content were detected with 4.57 - 32.71% of phenotypic variation explained (PVE) and logarithm of odds (LOD) scores ranging from 3.60 to 33.79. Five QTLs controlling the seed Zn content were detected, and they individually explained 3.35 to 26.48% of the phenotypic variation, with LOD scores ranging from 3.64 to 20.4. Meanwhile, 409,541 high-quality single-nucleotide variants (SNVs) and 85,102 InDels (except intergenic regions) between two bi-parental lines were identified by whole genome resequencing. A total of 12 candidate genes were reported in one major QTL for seed Fe content and two major QTLs for seed Zn content, with the help of RNA-Seq analysis, gene ontology (GO) enrichment, gene annotation, and bi-parental whole genome sequencing (WGS) data.
Conclusions
Limited studies were performed about microelement of soybean, so these results may play an important role in the biofortification of Fe and Zn and accelerate the development of marker-assisted selection (MAS) for breeding soybeans fortified with iron and zinc.
Funder
the Guangdong Agricultural Research System
the R & D Project in Key Areas of Guangdong Province
the China Agricultural Research System
the National Key R&D Program of China
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献