Author:
Aslam Mehtab Muhammad,Waseem Muhammad,Zhang Qian,Ke Wang,Zhang Jianhua,Xu Weifeng
Abstract
Abstract
Background
White lupin (Lupinus albus) is a leguminous crop with elite adaptive ability in phosphorus-deficient soil and used as a model plant for studying phosphorus (P) use. However, the genetic basis of its adaptation to low P (LP) remains unclear. ATPase binding cassette (ABC) transports G subfamily play a crucial role in the transportation of biological molecules across the membrane. To date, identification of this subfamily has been analyzed in some plants, but no systematic analysis of these transporters in phosphorus acquisition is available for white lupin.
Results
This study identified 66 ABCG gene family members in the white lupin genome using comprehensive approaches. Phylogenetic analysis of white lupin ABCG transporters revealed six subclades based on their counterparts in Arabidopsis, displaying distinct gene structure and motif distribution in each cluster. Influences of the whole genome duplication on the evolution of L.albABCGs were investigated in detail. Segmental duplications appear to be the major driving force for the expansion of ABCGs in white lupin. Analysis of the Ka/Ks ratios indicated that the paralogs of the L.albABCG subfamily members principally underwent purifying selection. However, it was found that L.albABCG29 was a result of both tandem and segmental duplications. Overexpression of L.albABCG29 in white lupin hairy root enhanced P accumulation in cluster root under LP and improved plant growth. Histochemical GUS staining indicated that L.albABCG29 expression increased under LP in white lupin roots. Further, overexpression of L.albABCG29 in rice significantly improved P use under combined soil drying and LP by improving root growth associated with increased rhizosheath formation.
Conclusion
Through systematic and comprehensive genome-wide bioinformatics analysis, including conserved domain, gene structures, chromosomal distribution, phylogenetic relationships, and gene duplication analysis, the L.albABCG subfamily was identified in white lupin, and L.albABCG29 characterized in detail. In summary, our results provide deep insight into the characterization of the L.albABCG subfamily and the role of L.albABCG29 in improving P use.
Publisher
Springer Science and Business Media LLC
Reference74 articles.
1. Feng Y, Sun Q, Zhang G, Wu T, Zhang X, Xu X, et al. Genome-wide identification and characterization of ABC transporters in nine Rosaceae species identifying MdABCG28 as a possible Cytokinin transporter linked to dwarfing. Int J Mol Sci. 2019;20(22):5783.
2. Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, et al. Plant ABC proteins–a unified nomenclature and updated inventory. Trends Plant Sci. 2008;13(4):151–9.
3. Chen P, Li Y, Zhao L, Hou Z, Yan M, Hu B, et al. Genome-wide identification and expression profiling of ATP-binding cassette (ABC) transporter gene family in pineapple (Ananas comosus (L.) Merr.) reveal the role of AcABCG38 in pollen development. Front. Plant Sci. 2017;8:2150.
4. Garcia O, Bouige P, Forestier C, Dassa E. Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. J Mol Biol. 2004;343(1):249–65.
5. Lopez-Ortiz C, Dutta SK, Natarajan P, Pena-Garcia Y, Abburi V, Saminathan T, et al. Genome-wide identification and gene expression pattern of ABC transporter gene family in Capsicum spp. PLoS One. 2019;14(4):e0215901.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献