In silico characterization, molecular phylogeny, and expression profiling of genes encoding legume lectin-like proteins under various abiotic stresses in Arabidopsis thaliana

Author:

Biswas Subhankar,Mondal Raju,Srivastava Akanksha,Trivedi Maitri,Singh Sunil Kumar,Mishra Yogesh

Abstract

Abstract Background Lectin receptor-like kinases (Lec-RLKs), a subfamily of RLKs, have been demonstrated to play an important role in signal transduction from cell wall to the plasma membrane during biotic stresses. Lec-RLKs include legume lectin-like proteins (LLPs), an important group of apoplastic proteins that are expressed in regenerating cell walls and play a role in immune-related responses. However, it is unclear whether LLPs have a function in abiotic stress mitigation and related signaling pathways. Therefore, in this study, we examined the possible role of LLPs in Arabidopsis thaliana (AtLLPs) under various abiotic stresses. Results The study was initiated by analyzing the chromosomal localization, gene structure, protein motif, peptide sequence, phylogeny, evolutionary divergence, and sub-cellular localization of AtLLPs. Furthermore, the expression profiling of these AtLLPs was performed using publicly accessible microarray datasets under various abiotic stresses, which indicated that all AtLLPs were differently expressed in both root and shoot tissues in response to abiotic stresses. The cis-regulatory elements (CREs) analysis in 500 bp promoter sequences of AtLLPs suggested the presence of multiple important CREs implicated for regulating abiotic stress responses, which was further supported by expressional correlation analysis between AtLLPs and their CREs cognate transcription factors (TFs). qRT-PCR analysis of these AtLLPs after 2, 6, and 12 h of cold, high light, oxidative (MV), UV-B, wound, and ozone stress revealed that all AtLLPs displayed differential expression patterns in most of the tested stresses, supporting their roles in abiotic stress response and signaling again. Out of these AtLLPs, AT1g53070 and AT5g03350 appeared to be important players. Furthermore, the mutant line of AT5g03350 exhibited higher levels of ROS than wild type plants till 12 h of exposure to high light, MV, UV-B, and wound, whereas its overexpression line exhibited comparatively lower levels of ROS, indicating a positive role of this gene in abiotic stress response in A. thaliana. Conclusions This study provides basic insights in the involvement of two important representative AtLLPs, AT1g53070 and AT5g03350, in abiotic stress response. However, further research is needed to determine the specific molecular mechanism of these AtLLPs in abiotic stress mitigation and related signaling pathways in A. thaliana.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3