Regulation of feather follicle development and Msx2 gene SNP degradation in Hungarian white goose

Author:

Song Yupu,Liu Chang,Zhou Yuxuan,Lin Guangyu,Xu Chenguang,Msuthwana Petunia,Wang Sihui,Ma Jingyun,Zhuang Fangming,Fu Xianou,Wang Yudong,Liu Tuoya,Liu Qianyan,Wang Jingbo,Sui Yujian,Sun Yongfeng

Abstract

Abstract Background Hungarian white goose has excellent down production performance and was introduced to China in 2010. The growth and development of feather follicles has an important impact on down production. Goose feather follicles can be divided into primary and secondary feather follicles, both of which originate in the embryonic stage. Msx2 (Msh Homeobox 2) plays a regulatory role in tissues and organs such as eyes, teeth, bones and skin. However, its regulatory mechanism on goose feather follicles development remains unclear. Results Msx2 gene first increased, then decreased and increased at the end (E13, E18, E23, E28) during embryonic feather follicle development, and the expression level was the highest at E18. The pEGFP-N1-Msx2 overexpression vector and si-Msx2 siRNA vector were constructed to transfect goose embryo dermal fibroblasts. The results showed that the cell viability of ov-Msx2 group was significantly increased, and the gene expression levels of FGF5 and TGF-β1 genes were significantly down-regulated (P < 0.05), the expressions of PCNA, Bcl2, CDK1, FOXN1 and KGF genes were significantly up-regulated (P < 0.05). After transfection of siRNA vector, the cell viability of the si-Msx2 group was significantly decreased (P < 0.01) compared with the si-NC group. TGF-β1 expression was significantly up-regulated (P < 0.05), FGF5 expression was extremely significantly up-regulated (P < 0.01), while PCNA, Bcl2, CDK1, FOXN1 and KGF gene expression was significantly down-regulated (P < 0.05). High-throughput sequencing technology was used to mine the exon SNPs of Msx2. A total of 11 SNP loci were screened, four of the SNPs located in exon 1 were missense mutations. The feather follicle diameter of the GC genotype at the G78C site is significantly larger than that of the other two genotypes. Conclusions Msx2 maybe inhibit the apoptosis of goose dermal fibroblasts and promotes their proliferation. G78C can be used as a potential molecular marker for downy Variety.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3