Abstract
Abstract
Background
Recent studies have shown that long non-coding RNAs (lncRNAs) play a crucial role in the induction of cancer through epigenetic regulation, transcriptional regulation, post-transcriptional regulation and other aspects, thus participating in various biological processes such as cell proliferation, differentiation and apoptosis. As a new nova of anti-tumor therapy, immunotherapy has been shown to be effective in many tumors of which PD-1/PD-L1 monoclonal antibodies has been proofed to increase overall survival rate in advanced gastric cancer (GC). Microsatellite instability (MSI) was known as a biomarker of response to PD-1/PD-L1 monoclonal antibodies therapy. The aim of this study was to identify lncRNAs signatures able to classify MSI status and create a predictive model associated with MSI for GC patients.
Methods
Using the data of Stomach adenocarcinoma from The Cancer Genome Atlas (TCGA), we developed and validated a lncRNAs model for automatic MSI classification using a machine learning technology – support vector machine (SVM). The C-index was adopted to evaluate its accuracy. The prognostic values of overall survival (OS) and disease-free survival (DFS) were also assessed in this model.
Results
Using the SVM, a lncRNAs model was established consisting of 16 lncRNA features. In the training cohort with 94 GC patients, accuracy was confirmed with AUC 0.976 (95% CI, 0.952 to 0.999). Veracity was also confirmed in the validation cohort (40 GC patients) with AUC 0.950 (0.889 to 0.999). High predicted score was correlated with better DFS in the patients with stage I-III and lower OS with stage I-IV.
Conclusion
This study identify 16 LncRNAs signatures able to classify MSI status. The correlation between lncRNAs and MSI status indicates the potential roles of lncRNAs interacting in immunotherapy for GC patients. The pathway of these lncRNAs which might be a target in PD-1/PD-L1 immunotherapy are needed to be further study.
Funder
the State’s Key Project of Research and Development Plan
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223–7.
2. Huang D, Chen J, Yang L, Ouyang Q, Li J, Lao L, Zhao J, Liu J, Lu Y, Xing Y, et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat Immunol. 2018;19:1112–25.
3. Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. Br J Cancer. 2013;108:2419–25.
4. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, Liu XQ, Sher X, Jung H, Lee M, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24:1449–58.
5. Hang X, Li D, Wang J, Wang G. Prognostic significance of microsatellite instabilityassociated pathways and genes in gastric cancer. Int J Mol Med. 2018;42:149–60.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献