Comparative proteomics of three Chinese potato cultivars to improve understanding of potato molecular response to late blight disease

Author:

Xiao Chunfang,Huang Mengling,Gao Jianhua,Wang Zhen,Zhang Denghong,Zhang Yuanxue,Yan Lei,Yu Xiao,Li Bo,Shen Yanfen

Abstract

Abstract Background Late blight disease (LBD) caused by the pathogen Phytophthora infestans (PI), is the most devastating disease limiting potato (Solanum tuberosum) production globally. Currently, this disease pathogen is re-emerging and appearing in new areas at a very high intensity. A better understanding of the natural defense mechanisms against PI in different potato cultivars especially at the protein level is still lacking. Therefore, to elucidate potato proteome response to PI, we investigated changes in the proteome and leaf morphology of three potato cultivars, namely; Favorita (FA), Mira (MA), and E-malingshu N0.14 (E14) infected with PI by using the iTRAQ-based quantitative proteomics analysis. Results A total of 3306 proteins were found in the three potato genotypes, and 2044 proteins were quantified. Cluster analysis revealed MA and E14 clustered together separately from FA. The protein profile and related functions revealed that the cultivars shared a typical hypersensitive response to PI, including induction of elicitors, oxidative burst, and suppression of photosynthesis in the potato leaves. Meanwhile, MA and E14 deployed additional specific response mechanism different from FA, involving high induction of protease inhibitors, serine/threonine kinases, terpenoid, hormone signaling, and transport, which contributed to MA tolerance of LBD. Furthermore, inductions of pathogenesis-related proteins, LRR receptor-like kinases, mitogen-activated protein kinase, WRKY transcription factors, jasmonic acid, and phenolic compounds mediate E14 resistance against LBD. These proteins were confirmed at the transcription level by a quantitative polymerase chain reaction and at the translation level by western-blot. Conclusions We found several proteins that were differentially abundant among the cultivars, that includes common and cultivar specific proteins which highlighted similarities and significant differences between FA, MA, and E14 in terms of their defense response to PI. Here the specific accumulation of mitogen-activated protein kinase, Serine/threonine kinases, WRKY transcription played a positive role in E14 immunity against PI. The candidate proteins identified reported in this study will form the basis of future studies and may improve our understanding of the molecular mechanisms of late blight disease resistance in potato.

Funder

Hubei Technological Innovation Special Fund

Agriculture Research System of China

Central Guidance for Local Science and Technology Development

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3