Exploring microproteins from various model organisms using the mip-mining database

Author:

Zhao Bowen,Zhao Jing,Wang Muyao,Guo Yangfan,Mehmood Aamir,Wang Weibin,Xiong Yi,Luo Shenggan,Wei Dong-Qing,Zhao Xin-Qing,Wang Yanjing

Abstract

AbstractMicroproteins, prevalent across all kingdoms of life, play a crucial role in cell physiology and human health. Although global gene transcription is widely explored and abundantly available, our understanding of microprotein functions using transcriptome data is still limited. To mitigate this problem, we present a database, Mip-mining (https://weilab.sjtu.edu.cn/mipmining/), underpinned by high-quality RNA-sequencing data exclusively aimed at analyzing microprotein functions. The Mip-mining hosts 336 sets of high-quality transcriptome data from 8626 samples and nine representative living organisms, including microorganisms, plants, animals, and humans, in our Mip-mining database. Our database specifically provides a focus on a range of diseases and environmental stress conditions, taking into account chemical, physical, biological, and diseases-related stresses. Comparatively, our platform enables customized analysis by inputting desired data sets with self-determined cutoff values. The practicality of Mip-mining is demonstrated by identifying essential microproteins in different species and revealing the importance of ATP15 in the acetic acid stress tolerance of budding yeast. We believe that Mip-mining will facilitate a greater understanding and application of microproteins in biotechnology. Moreover, it will be beneficial for designing therapeutic strategies under various biological conditions.

Funder

State Key Research and Development Program

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

SJTU JiRLMDS Joint Research Fund and Joint Research Funds for Medical and Engineering and Scientific Research at Shanghai Jiao Tong University

Joint Research Funds for Medical and Engineering and Scientific Research at Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. StoneMod 2.0: Database and prediction of kidney stone modulatory proteins;International Journal of Biological Macromolecules;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3