Assessing genomic diversity and signatures of selection in Original Braunvieh cattle using whole-genome sequencing data

Author:

Bhati MeenuORCID,Kadri Naveen Kumar,Crysnanto Danang,Pausch Hubert

Abstract

Abstract Background Autochthonous cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and food conditions. Original Braunvieh (OB) is a local cattle breed of Switzerland used for beef and milk production in alpine areas. Using whole-genome sequencing (WGS) data of 49 key ancestors, we characterize genomic diversity, genomic inbreeding, and signatures of selection in Swiss OB cattle at nucleotide resolution. Results We annotated 15,722,811 SNPs and 1,580,878 Indels including 10,738 and 2763 missense deleterious and high impact variants, respectively, that were discovered in 49 OB key ancestors. Six Mendelian trait-associated variants that were previously detected in breeds other than OB, segregated in the sequenced key ancestors including variants causal for recessive xanthinuria and albinism. The average nucleotide diversity (1.6  × 10− 3) was higher in OB than many mainstream European cattle breeds. Accordingly, the average genomic inbreeding derived from runs of homozygosity (ROH) was relatively low (FROH = 0.14) in the 49 OB key ancestor animals. However, genomic inbreeding was higher in OB cattle of more recent generations (FROH = 0.16) due to a higher number of long (> 1 Mb) runs of homozygosity. Using two complementary approaches, composite likelihood ratio test and integrated haplotype score, we identified 95 and 162 genomic regions encompassing 136 and 157 protein-coding genes, respectively, that showed evidence (P < 0.005) of past and ongoing selection. These selection signals were enriched for quantitative trait loci related to beef traits including meat quality, feed efficiency and body weight and pathways related to blood coagulation, nervous and sensory stimulus. Conclusions We provide a comprehensive overview of sequence variation in Swiss OB cattle genomes. With WGS data, we observe higher genomic diversity and less inbreeding in OB than many European mainstream cattle breeds. Footprints of selection were detected in genomic regions that are possibly relevant for meat quality and adaptation to local environmental conditions. Considering that the population size is low and genomic inbreeding increased in the past generations, the implementation of optimal mating strategies seems warranted to maintain genetic diversity in the Swiss OB cattle population.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference98 articles.

1. Food and Agriculture Organization. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture. Rome: FAO Commission on Genetic Resources for Food and Agriculture Assessments. 2015. www.fao.org/publications.

2. Diversity ECG, Consortium. Marker-assisted conservation of European cattle breeds: an evaluation. Anim Genet. 2006;37:475–81.

3. Medugorac I, Medugorac A, Russ I, Veit-Kensch CE, Taberlet P, Luntz B, et al. Genetic diversity of European cattle breeds highlights the conservation value of traditional unselected breeds with high effective population size. Mol Ecol. 2009;18:3394–410.

4. Boettcher PJ, Hoffmann I, Baumung R, Drucker AG, McManus C, Berg P, et al. Genetic resources and genomics for adaptation of livestock to climate change. Front Genet. 2014;5:461.

5. Biscarini F, Nicolazzi E, Alessandra S, Boettcher P, Gandini G. Challenges and opportunities in genetic improvement of local livestock breeds. Front Genet. 2015;6:33.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3