Inferring the genetic responses to acute drought stress across an ecological gradient

Author:

Devitt Jessica K.ORCID,Chung Albert,Schenk John J.

Abstract

Abstract Background How do xerophytic species thrive in environments that experience extreme annual drought? Although critical to the survival of many species, the genetic responses to drought stress in many non-model organisms has yet to be explored. We investigated this question in Mentzelia section Bartonia (Loasaceae), which occurs throughout western North America, including arid lands. To better understand the genetic responses to drought stress among species that occur in different habitats, the gene expression levels of three species from Mentzelia were compared across a precipitation gradient. Two de novo reference transcriptomes were generated and annotated. Leaf and root tissues were collected from control and drought shocked plants and compared to one another for differential expression. A target-gene approach was also implemented to better understand how drought-related genes from model and crop species function in non-model systems. Results When comparing the drought-shock treatment plants to their respective control plants, we identified 165 differentially expressed clusters across all three species. Differentially expressed genes including those associated with water movement, photosynthesis, and delayed senescence. The transcriptome profiling approach was coupled with a target genes approach that measured expression of 90 genes associated with drought tolerance in model organisms. Comparing differentially expressed genes with a ≥ 2 log-fold value between species and tissue types showed significant differences in drought response. In pairwise comparisons, species that occurred in drier environments differentially expressed greater genes in leaves when drought shocked than those from wetter environments, but expression in the roots mostly produced opposite results. Conclusions Arid-adapted species mount greater genetic responses compared to the mesophytic species, which has likely evolved in response to consistent annual drought exposure across generations. Drought responses also depended on organ type. Xerophytes, for example, mounted a larger response in leaves to downregulate photosynthesis and senescence, while mobilizing carbon and regulating water in the roots. The complexity of drought responses in Mentzelia suggest that whole organism responses need to be considered when studying drought and, in particular, the physiological mechanisms in which plants regulate water, carbon, cell death, metabolism, and secondary metabolites.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3