Genomic predictions for fillet yield and firmness in rainbow trout using reduced-density SNP panels

Author:

Al-Tobasei Rafet,Ali Ali,Garcia Andre L. S.,Lourenco Daniela,Leeds Tim,Salem MohamedORCID

Abstract

Abstract Background One of the most important goals for the rainbow trout aquaculture industry is to improve fillet yield and fillet quality. Previously, we showed that a 50 K transcribed-SNP chip can be used to detect quantitative trait loci (QTL) associated with fillet yield and fillet firmness. In this study, data from 1568 fish genotyped for the 50 K transcribed-SNP chip and ~ 774 fish phenotyped for fillet yield and fillet firmness were used in a single-step genomic BLUP (ssGBLUP) model to compute the genomic estimated breeding values (GEBV). In addition, pedigree-based best linear unbiased prediction (PBLUP) was used to calculate traditional, family-based estimated breeding values (EBV). Results The genomic predictions outperformed the traditional EBV by 35% for fillet yield and 42% for fillet firmness. The predictive ability for fillet yield and fillet firmness was 0.19–0.20 with PBLUP, and 0.27 with ssGBLUP. Additionally, reducing SNP panel densities indicated that using 500–800 SNPs in genomic predictions still provides predictive abilities higher than PBLUP. Conclusion These results suggest that genomic evaluation is a feasible strategy to identify and select fish with superior genetic merit within rainbow trout families, even with low-density SNP panels.

Funder

National Institute of Food and Agriculture

Agricultural Research Service

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Reference61 articles.

1. Burbridge, Hendrick, Roth, Rosenthal. Social and economic policy issues relevant to marine aquaculture. J Appl Ichthyol. 2001;17(4):194–206.

2. Fornshell G. Rainbow Trout — Challenges and Solutions, vol. 10; 2002. p. 545–57.

3. Gjedrem T. Selection and Breeding Programs in Aquaculture. New York: Springer; 2008.

4. WorldFish Center. Climate Change: Research to Meet the Challenges Facing Fisheries and Aquaculture. In: Issues Brief 1915. In.; 2009.

5. Gjedrem T. Breeding plans for rainbow trout. In: GAE G, editor. The Rainbow Trout: Proceedings of the First Aquaculture-sponsored Symposium held at the Institute of Aquaculture, University of Sterling, Scotland, vol. 100; 1992. p. 73–83.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3