Author:
Harshini Vemula,Shukla Nitin,Raval Ishan,Kumar Sujit,Shrivastava Vivek,Chaudhari Aparna,Patel Amrutlal K.,Joshi Chaitanya G.
Abstract
Abstract
Background
Labeo rohita is the most preferred freshwater carp species in India. The concern of increasing salinity concentration in freshwater bodies due to climate change may greatly impact the aquatic environment. Gills are one of the important osmoregulatory organs and have direct contact with external environment. Hence, the current study is conducted to understand the gill transcriptomic response of L. rohita under hypersalinity environment.
Results
Comprehensive analysis of differentially expressed long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs was performed in gills of L. rohita treated with 2, 4, 6 and 8ppt salinity concentrations. Networks of lncRNA-miRNA-mRNA revealed involvement of 20, 33, 52 and 61 differentially expressed lncRNAs, 11, 13, 26 and 21 differentially expressed miRNAs in 2, 4, 6 and 8ppt groups between control and treatment respectively. These lncRNA-miRNA pairs were regulating 87, 214, 499 and 435 differentially expressed mRNAs (DE mRNAs) in 2, 4, 6 and 8ppt treatments respectively. Functional analysis of these genes showed enrichment in pathways related to ion transportation and osmolyte production to cope with induced osmotic pressure due to high salt concentration. Pathways related to signal transduction (MAPK, FOXO and phosphatidylinositol signaling), and environmental information processing were also upregulated under hypersalinity. Energy metabolism and innate immune response pathways also appear to be regulated. Protein turnover was high at 8ppt as evidenced by enrichment of the proteasome and aminoacyl tRNA synthesis pathways, along with other enriched KEGG terms such as apoptosis, cellular senescence and cell cycle.
Conclusion
Altogether, the RNA-seq analysis provided valuable insights into competitive endogenous (lncRNA-miRNA-mRNA) regulatory network of L. rohita under salinity stress. L. rohita is adapting to the salinity stress by means of upregulating protein turnover, osmolyte production and removing the damaged cells using apoptotic pathway and regulating the cell growth and hence diverting the essential energy for coping with salinity stress.
Funder
Government of Gujarat-Department of Science and Technology
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Sarma K, Dey A, Kumar S, Chaudhary BK, Mohanty S, Kumar T, et al. Effect of salinity on growth, survival and biochemical alterations in the freshwater fish Labeo rohita (Hamilton 1822). Indian J Fish. 2020;67:41–7.
2. Cui Q, Qiu L, Yang X, Shang S, Yang B, Chen M, et al. Transcriptome profiling of the low-salinity stress responses in the gills of the juvenile Pseudopleuronectes yokohamae. Comp Biochem Physiol Part D Genomics Proteomics. 2019;32:100612.
3. Jeppesen E, Beklio\uglu M, Özkan K, Akyürek Z. Salinization increase due to climate change will have substantial negative effects on inland waters: a call for multifaceted research at the local and global scale. Innov. 2020;1.
4. Kulp SA, Strauss BH. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat Commun. 2019;10:1–12.
5. Baliarsingh MM, Panigrahi JK, Patra AK. Effect of salinity on growth and survivality of Labeorohita in captivity. Int J Sci Res. 2018;7:28–30.