Bioinformatics analysis identifies a key gene HLA_DPA1 in severe influenza-associated immune infiltration

Author:

Chen Liang,Hua Jie,He Xiaopu

Abstract

Abstract Background Severe influenza is a serious global health issue that leads to prolonged hospitalization and mortality on a significant scale. The pathogenesis of this infectious disease is poorly understood. Therefore, this study aimed to identify the key genes associated with severe influenza patients necessitating invasive mechanical ventilation. Methods The current study utilized two publicly accessible gene expression profiles (GSE111368 and GSE21802) from the Gene Expression Omnibus database. The research focused on identifying the genes exhibiting differential expression between severe and non-severe influenza patients. We employed three machine learning algorithms, namely the Least Absolute Shrinkage and Selection Operator regression model, Random Forest, and Support Vector Machine-Recursive Feature Elimination, to detect potential key genes. The key gene was further selected based on the diagnostic performance of the target genes substantiated in the dataset GSE101702. A single-sample gene set enrichment analysis algorithm was applied to evaluate the participation of immune cell infiltration and their associations with key genes. Results A total of 44 differentially expressed genes were recognized; among them, we focused on 10 common genes, namely PCOLCE2, HLA_DPA1, LOC653061, TDRD9, MPO, HLA_DQA1, MAOA, S100P, RAP1GAP, and CA1. To ensure the robustness of our findings, we employed overlapping LASSO regression, Random Forest, and SVM-RFE algorithms. By utilizing these algorithms, we were able to pinpoint the aforementioned 10 genes as potential biomarkers for distinguishing between both cases of influenza (severe and non-severe). However, the gene HLA_DPA1 has been recognized as a crucial factor in the pathological condition of severe influenza. Notably, the validation dataset revealed that this gene exhibited the highest area under the receiver operating characteristic curve, with a value of 0.891. The use of single-sample gene set enrichment analysis has provided valuable insights into the immune responses of patients afflicted with severe influenza that have further revealed a categorical correlation between the expression of HLA_DPA1 and lymphocytes. Conclusion The findings indicated that the HLA_DPA1 gene may play a crucial role in the immune-pathological condition of severe influenza and could serve as a promising therapeutic target for patients infected with severe influenza.

Funder

Nanjing medical science and technology development fund

Foundation for Advanced Talents

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3