Author:
Yang Yang,Liu Xiaobao,Cai Jimiao,Chen Yipeng,Li Boxun,Guo Zhikai,Huang Guixiu
Abstract
Abstract
Background
Sarocladium brachiariae is a newly identified endophytic fungus isolated from Brachiaria brizantha. A previous study indicated that S. brachiariae had antifungal activity; however, limited genomic information restrains further study. Therefore, we sequenced the genome of S. brachiariae and compared it with the genome of S. oryzae to identify differences between a Sarocladium plant pathogen and an endophyte.
Results
In this study, we reported a gapless genome sequence of a newly identified endophytic fungus Sarocladium brachiariae isolated from Brachiaria brizantha. The genome of S. brachiariae is 31.86 Mb, with a contig N50 of 3.27 Mb and 9903 protein coding genes. Phylogenomic analysis based on single copy orthologous genes provided insights into the evolutionary relationships of S. brachiariae and its closest species was identified as S. oryzae. Comparative genomics analysis revealed that S. brachiaria has 14.9% more plant cell wall degradation related CAZymes to S. oryzae, and 33.3% more fungal cell wall degradation related CAZymes, which could explain the antifungal activity of S. brachiaria. Based on Antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) analysis, we identified a contact helvolic acid biosynthetic gene cluster (BGC) for the first time in S. oryzae. However, S. brachiaria had seven fewer terpene gene clusters, including helvolic acid BGC, compared with S. oryzae and this may be associated with adaptation to an endophytic lifestyle. Synteny analysis of polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), and hybrid (PKS-NRPS) gene clusters between S. brachiariae and S. oryzae revealed that just 37.5% of tested clusters have good synteny, while 63.5% have no or poor synteny. This indicated that the S. brachiariae could potentially synthesize a variety of unknown-function secondary metabolites, which may play an important role in adaptation to its endophytic lifestyle and antifungal activity.
Conclusions
The data provided a better understanding of the Sarocladium brachiariae genome. Further comparative genomic analysis provided insight into the genomic basis of its endophytic lifestyle and antifungal activity.
Funder
Hainan Provincial Natural Science Foundation of China
National Key R&D Program of China
Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences
Publisher
Springer Science and Business Media LLC
Reference87 articles.
1. Gams W, Hawksworth DL: Identity of Acrocylindrium oryzae Sawada and a similar fungus causing sheath-rot of rice. Kavaka 1975.
2. Giraldo A, Gené J, Sutton D, Madrid H, De Hoog G, Cano J, Decock C, Crous PW, Guarro J: Phylogeny of Sarocladium (Hypocreales). Persoonia, 2015, 34:10.
3. Summerbell R, Gueidan C, Schroers H, De Hoog G, Starink M, Rosete YA, Guarro J, Scott J. Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Stud Mycol. 2011;68:139–62.
4. Liu X, Guo Z, Huang G. Sarocladium brachiariae sp. nov., an endophytic fungus isolated from Brachiaria brizantha. Mycosphere. 2017;8:827–34.
5. Huang GX, Shi T, Liu XB Dai YK, Cai JM and Lin CH: GFP-tagging and antagonistic activity of the engineered strains of Brachiaria brizantha endophytic fungus HND5. Chinese Journal of Biological Control 2010, 26:320–326. (In Chinese).
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献