Identification of crucial genes and metabolites regulating the eggshell brownness in chicken

Author:

Yang Jing,Mao Zhiqiong,Wang Xiqiong,Zhuang Jingjie,Gong Sijia,Gao Zhouyang,Xu Guiyun,Yang Ning,Sun Congjiao

Abstract

Abstract Background Protoporphyrin IX (Pp IX) is the primary pigment for brown eggshells. However, the regulatory mechanisms directing Pp IX synthesis, transport, and genetic regulation during eggshell calcification in chickens remain obscure. In this study, we investigated the mechanism of brown eggshell formation at different times following oviposition, using White Leghorn hens (WS group), Rhode Island Red light brown eggshell line hens (LBS group) and Rhode Island Red dark brown eggshell line hens (DBS group). Results At 4, 16 and 22 h following oviposition, Pp IX concentrations in LBS and DBS groups were significantly higher in shell glands than in liver (P < 0.05). Pp IX concentrations in shell glands of LBS and DBS groups at 16 and 22 h following oviposition were significantly higher than WS group (P < 0.05). In comparative transcriptome analysis, δ-aminolevulinate synthase 1 (ALAS1), solute carrier family 25 member 38 (SLC25A38), ATP binding cassette subfamily G member 2 (ABCG2) and feline leukemia virus subgroup C cellular receptor 1 (FLVCR1), which were associated with Pp IX synthesis, were identified as differentially expressed genes (DEGs). RT-qPCR results showed that the expression level of ALAS1 in shell glands was significantly higher in DBS group than in WS group at 16 and 22 h following oviposition (P < 0.05). In addition, four single nucleotide polymorphisms (SNPs) in ALAS1 gene that were significantly associated with eggshell brownness were identified. By identifying the differential metabolites in LBS and DBS groups, we found 11-hydroxy-E4-neuroprostane in shell glands and 15-dehydro-prostaglandin E1(1-) and prostaglandin G2 2-glyceryl ester in uterine fluid were related to eggshell pigment secretion. Conclusions In this study, the regulatory mechanisms of eggshell brownness were studied comprehensively by different eggshell color and time following oviposition. Results show that Pp IX is synthesized de novo and stored in shell gland, and ALAS1 is a key gene regulating Pp IX synthesis in the shell gland. We found three transporters in Pp IX pathway and three metabolites in shell glands and uterine fluid that may influence eggshell browning.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3