Author:
van Steenbrugge Joris J.M.,van den Elsen Sven,Holterman Martijn,Sterken Mark G.,Thorpe Peter,Goverse Aska,Smant Geert,Helder Johannes
Abstract
Abstract
Background
Potato cyst nematodes belong to the most harmful pathogens in potato, and durable management of these parasites largely depends on host-plant resistances. These resistances are pathotype specific. The current Globodera rostochiensis pathotype scheme that defines five pathotypes (Ro1 - Ro5) is both fundamentally and practically of limited value. Hence, resistant potato varieties are used worldwide in a poorly informed manner.
Results
We generated two novel reference genomes of G. rostochiensis inbred lines derived from a Ro1 and a Ro5 population. These genome sequences comprise 173 and 189 scaffolds respectively, marking a ≈ 24-fold reduction in fragmentation as compared to the current reference genome. We provide copy number variations for 19 effector families. Four dorsal gland effector families were investigated in more detail. SPRYSECs, known to be implicated in plant defence suppression, constitute by far the most diversified family studied herein with 60 and 99 variants in Ro1 and Ro5 distributed over 18 and 26 scaffolds. In contrast, CLEs, effectors involved in feeding site induction, show strong physical clustering. The 10 and 16 variants cluster on respectively 2 and 1 scaffolds. Given that pathotypes are defined by their effectoromes, we pinpoint the disparate nature of the contributing effector families in terms of sequence diversification and loss and gain of variants.
Conclusions
Two novel reference genomes allow for nearly complete inventories of effector diversification and physical organisation within and between pathotypes. Combined with insights we provide on effector family-specific diversification patterns, this constitutes a basis for an effectorome-based virulence scheme for this notorious pathogen.
Publisher
Springer Science and Business Media LLC
Reference77 articles.
1. Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Maafi ZT: Current Nematode Threats to World Agriculture. In: Genomics and Molecular Genetics of Plant-Nematode Interactions. Edited by Jones J, Gheysen G, Fenoll C. Dordrecht (The Netherlands): Springer; 2011: 21–43.
2. Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-L√≥pez R, Palomares-Rius JE, Wesemael WML, et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology. 2013;14(9):946–61.
3. Plantard O, Picard D, Valette S, Scurrah M, Grenier E, Mugniéry D. Origin and genetic diversity of Western European populations of the potato cyst nematode (Globodera pallida) inferred from mitochondrial sequences and microsatellite loci. Mol Ecol. 2008;17(9):2208–18.
4. Montarry J, Bardou-Valette S, Mabon R, Jan PL, Fournet S, Grenier E, Petit EJ: Exploring the causes of small effective population sizes in cyst nematodes using artificial Globodera pallida populations. Proceedings of the Royal Society B: Biological Sciences 2019, 286(1894).
5. Jan PL, Gracianne C, Fournet S, Olivier E, Arnaud JF, Porte C, Bardou-Valette S, Denis MC, Petit EJ. Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 1. Insights from the estimation of effective population sizes. Evol Appl. 2016;9(3):489–501.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献