Chromosome-level genome assemblies of Cutaneotrichosporon spp. (Trichosporonales, Basidiomycota) reveal imbalanced evolution between nucleotide sequences and chromosome synteny

Author:

Kobayashi Yuuki,Kayamori Ayane,Aoki Keita,Shiwa Yuh,Matsutani Minenosuke,Fujita Nobuyuki,Sugita Takashi,Iwasaki Wataru,Tanaka Naoto,Takashima Masako

Abstract

Abstract Background Since DNA information was first used in taxonomy, barcode sequences such as the internal transcribed spacer (ITS) region have greatly aided fungal identification; however, a barcode sequence alone is often insufficient. Thus, multi-gene- or whole-genome-based methods were developed. We previously isolated Basidiomycota yeasts classified in the Trichosporonales. Some strains were described as Cutaneotrichosporon cavernicola and C. spelunceum, whereas strain HIS471 remained unidentified. We analysed the genomes of these strains to elucidate their taxonomic relationship and genetic diversity. Results The long-read-based assembly resulted in chromosome-level draft genomes consisting of seven chromosomes and one mitochondrial genome. The genome of strain HIS471 has more than ten chromosome inversions or translocations compared to the type strain of C. cavernicola despite sharing identical ITS barcode sequences and displaying an average nucleotide identity (ANI) above 93%. Also, the chromosome synteny between C. cavernicola and the related species, C. spelunceum, showed significant rearrangements, whereas the ITS sequence identity exceeds 98.6% and the ANI is approximately 82%. Our results indicate that the relative evolutionary rates of barcode sequences, whole-genome nucleotide sequences, and chromosome synteny in Cutaneotrichosporon significantly differ from those in the model yeast Saccharomyces. Conclusions Our results revealed that the relative evolutionary rates of nucleotide sequences and chromosome synteny are different among fungal clades, likely because different clades have diverse mutation/repair rates and distinct selection pressures on their genomic sequences and syntenic structures. Because diverse syntenic structures can be a barrier to meiotic recombination and may lead to speciation, the non-linear relationships between nucleotide and synteny diversification indicate that sequence-level distances at the barcode or whole-genome level are not sufficient for delineating species boundaries.

Funder

Institute for Fermentation, Osaka

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3