Systematic investigation of imprinted gene expression and enrichment in the mouse brain explored at single-cell resolution

Author:

Higgs M. J.,Hill M. J.,John R. M.,Isles A. R.

Abstract

Abstract Background Although a number of imprinted genes are known to be highly expressed in the brain, and in certain brain regions in particular, whether they are truly over-represented in the brain has never been formally tested. Using thirteen single-cell RNA sequencing datasets we systematically investigated imprinted gene over-representation at the organ, brain region, and cell-specific levels. Results We established that imprinted genes are indeed over-represented in the adult brain, and in neurons particularly compared to other brain cell-types. We then examined brain-wide datasets to test enrichment within distinct brain regions and neuron subpopulations and demonstrated over-representation of imprinted genes in the hypothalamus, ventral midbrain, pons and medulla. Finally, using datasets focusing on these regions of enrichment, we identified hypothalamic neuroendocrine populations and the monoaminergic hindbrain neurons as specific hotspots of imprinted gene expression. Conclusions These analyses provide the first robust assessment of the neural systems on which imprinted genes converge. Moreover, the unbiased approach, with each analysis informed by the findings of the previous level, permits highly informed inferences about the functions on which imprinted gene expression converges. Our findings indicate the neuronal regulation of motivated behaviours such as feeding and sleep, alongside the regulation of pituitary function, as functional hotspots for imprinting. This adds statistical rigour to prior assumptions and provides testable predictions for novel neural and behavioural phenotypes associated with specific genes and imprinted gene networks. In turn, this work sheds further light on the potential evolutionary drivers of genomic imprinting in the brain.

Funder

Wellcome Trust

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3