Author:
Li Jing,Gao Xiaoyang,Sang Shiye,Liu Changning
Abstract
Abstract
Background
Euphorbiaceae is one of the largest families of flowering plants. Due to its exceptional growth form diversity and near-cosmopolitan distribution, it has attracted much interest since ancient times. SBP-box (SBP) genes encode plant-specific transcription factors that play critical roles in numerous biological processes, especially flower development. We performed genome-wide identification and characterization of SBP genes from four economically important Euphorbiaceae species.
Results
In total, 77 SBP genes were identified in four Euphorbiaceae genomes. The SBP proteins were divided into three length ranges and 10 groups. Group-6 was absent in Arabidopsis thaliana but conserved in Euphorbiaceae. Segmental duplication played the most important role in the expansion processes of Euphorbiaceae SBP genes, and all the duplicated genes were subjected to purify selection. In addition, about two-thirds of the Euphorbiaceae SBP genes are potential targets of miR156, and some miR-regulated SBP genes exhibited high intensity expression and differential expression in different tissues. The expression profiles related to different stress treatments demonstrated broad involvement of Euphorbiaceae SBP genes in response to various abiotic factors and hormonal treatments.
Conclusions
In this study, 77 SBP genes were identified in four Euphorbiaceae species, and their phylogenetic relationships, protein physicochemical characteristics, duplication, tissue and stress response expression, and potential roles in Euphorbiaceae development were studied. This study lays a foundation for further studies of Euphorbiaceae SBP genes, providing valuable information for future functional exploration of Euphorbiaceae SBP genes.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference69 articles.
1. Gong W, Shen YP, Ma LG, Pan Y, Du YL, Wang DH, et al. Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol. 2004;135(2):773–82.
2. Klein J, Saedler H, Huijser P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet. 1996;250(1):7–16.
3. Guo AY, Zhu QH, Gu X, Ge S, Yang J, Luo J. Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene. 2008;418(1–2):1–8.
4. Riese M, Hohmann S, Saedler H, Munster T, Huijser P. Comparative analysis of the SBP-box gene families in P. patens and seed plants. Gene. 2007;401(1–2):28–37.
5. Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, Wagner D. The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell. 2009;17(2):268–78.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献